Education
School ¡X Major ¡X Degree | Duration |
---|---|
°ê¥ß¤¤¿³¤j¾Ç ¡X ¤Æ¾Ç¨t(²¦) ¡X ³Õ¤h Doctorate, Department of Chemistry, National Chung Hsing University |
2002/07 ¡X 2006/06 |
°ê¥ß®v½d¤j¾Ç ¡X ²z¾Ç°|¤Æ¾Ç¨t(²¦) ¡X ºÓ¤h Master, Department of Chemistry, National Taiwan Normal University |
1999/08 ¡X 2001/07 |
Intramural Experience
Office/Department/Institute | Position | Duration |
---|---|---|
ÂåÃĺ[À³¥Î¤Æ¾Ç¨t Department of Medicinal and Applied Chemistry | Professor | 2021/08/01 ¡X |
¥Í©R¬ì¾Ç°|¾Ç¤h¯Z | Professor | 2020/08/01 ¡X 2021/07/31 |
ÂåÃĺ[À³¥Î¤Æ¾Ç¨t Department of Medicinal and Applied Chemistry | Professor | 2017/02/01 ¡X 2020/07/31 |
ÂåÃĺ[À³¥Î¤Æ¾Ç¨t Department of Medicinal and Applied Chemistry | Associate Professor | 2013/08/01 ¡X 2017/01/31 |
ÂåÃĺ[À³¥Î¤Æ¾Ç¨t Department of Medicinal and Applied Chemistry | Assistant Professor | 2009/08/01 ¡X 2013/07/31 |
Extramural Experience
Discipline
NO | Discipline | Expertise |
---|---|---|
1 | ¦ÛµM¬ì¾ÇÃþ Natural Sciences | ¤Æ¾Ç Chemistry |
Research & Technology Platform Open to the Outside
Interested Area(s)for Interdisciplinary Research
©`¦Ì§÷®Æ¡B¥ÍÂå§÷®Æ¡B¤Æ§©«~§÷®Æ
Area(s) of Expertise & Research
ÀôàÃþ»E¦X¤ÏÀ³¤§¶Ê¤Æ¾¯³]p¡B·s¿o¥Íª«¥i¤À¸Ñ°ª¤À¤l»E¦Xª«¤§³]p»P¦X¦¨
catalyst design in ring-opening polymerization of cyclic esters, The design and synthesis of the novel biodegradable polymers
Publication
NO | Publication |
---|---|
1 | Iron oxide quantum dots-based fluorescence probe for rapid and selective cytosine sensing Iron oxide quantum dots-based fluorescence probe for rapid and selective cytosine sensing |
2 | L-¤þ¥æà»E¦X¦³¾÷¶Ê¤Æ¾¯¡G2-ÖJ°ò-©M2-ªÚ°ò-1,1,3,3-¥|¥Ò°òÐg Organocatalysts for L-Lactide polymerization: 2-alkyl- and 2-aryl-1,1,3,3-tetramethylguanidines |
3 | 189 / 5,000 2-(¨ÈªÚ°ò®ò°ò)×ôÆQ©M2-((ªÚ°ò¨È®ò°ò)¥Ò°ò)×ôÆQÜg°t¦Xª«§@¬°£`-¤v¤ºà©ML-¤þ¥æà¶}Àô»E¦X¶Ê¤Æ¾¯ªº¤ñ¸û¬ã¨s Comparative Study of Titanium Complexes Bearing 2-(Arylideneamino)phenolates and 2-((Arylimino)methyl)phenolates as Catalysts for Ring-Opening Polymerization of £`‑Caprolactone and L-Lactide |
4 | Fluorescence and Colorimetric Dual-readout Detection of Tetracycline Using Leucine-conjugated Iron Oxide Quantum Dots Fluorescence and Colorimetric Dual-readout Detection of Tetracycline Using Leucine-conjugated Iron Oxide Quantum Dots |
5 | £`-¤v¤ºà©M¤þ¥æà¶}Àô»E¦X¤¤ªº¦h®Öª÷Äݶʤƾ¯¡Gª÷Äݤ¤¤ß¤§¶¡ªº¨ó¦P®ÄÀ³©M¹q¤l®ÄÀ³ Multinuclear metal catalysts in ring-opening polymerization of e caprolactone and lactide: Cooperative and electronic effects between metal centers |
6 | ¤ô·¨»Ä¤Aà¾N°t¦Xª«¶Ê¤Æ£`-¤v¤ºà©ML-¤þ¥æ઺¶}Àô»E¦X Ring-opening polymerization of £`-caprolactone and L-lactide using ethyl salicylate-bearing zinc complexes as catalysts |
7 | ±a¦³N,N'-¤GªÚ°ò¤G¯óñQÓià©MN,N'-¤GªÚ°ò¤G²¸¥N¯óñQÓià°tÅ骺¾T°t¦Xª«¦b£`-¤v¤ºà¶}Àô»E¦X¤¤ªº¤ñ¸û¬ã¨s Comparative Study of Aluminum Complexes Bearing N,N¡¬‑Diaryldioxalamidate and N,N¡¬‑Diaryldithiooxalamidate Ligands in Ring-Opening Polymerization of £`‑Caprolactone |
8 | ´£°ª¾T°t¦Xª«¹ï£`-¤v¤ºà¶}Àô»E¦Xªº¶Ê¤Æ¬¡©Ê¡G²¸¥N®ò°ò¾T©M ²¸脲»ÄÆQ¨t²Î Improvement of catalytic activity of aluminum complexes for the ring-opening polymerization of £`-caprolactone: aluminum thioamidate and thioureidate systems |
9 | §t£]-²¸¥NନȻÄÆQ©M£]-ନȻÄÆQªº¾T°t¦Xª«¹ï£`-¤v¤ºà¶}Àô»E¦X¤ÏÀ³¬¡©Êªº¼vÅT Effects of Aluminum Complexes Bearing £]‑Thioketiminate and £]‑Ketiminates on £`‑Caprolactone Ring-Opening Polymerization Reactivity |
10 | §Q¥Î§t²¸îÅf×ô°t¦ì°ò¤§¾T¶Ê¤Æ¾¯¶i¦æÀô¤v¤ºà¶}Àô»E¦X¤ÏÀ³¡G¬¡ÅDªº²¸îÅîg¦X®ÄÀ³ Ring-Opening Polymerization of £`‑Caprolactone by Using Aluminum Complexes Bearing Aryl Thioether Phenolates: Labile Thioether Chelation |
11 | £`-¤v¤ºà¶}Àô»E¦X¹Lµ{¤¤¾T°t¦Xª«ªº¨ó¦P®ÄÀ³¡GÂù®Öª÷Äݶʤƾ¯¤§¶¡ªº»¤¾É®ÄÀ³ Synergy effect of aluminum complexes during the ring-opening polymerization of £`-caprolactone: Inductive effects between dinuclear metal catalysts |
12 | »E¡]£`-¤v¤ºà¡^§@¬°¬V®Æ±Ó¤Æ¤Ó¶§¯à¹q¦À¾®½¦¹q¸Ñ½èªº»s³Æ Preparation of poly (£`-caprolactone) as a gel electrolyte for dye-sensitized solar cells |
13 | ¡³Ð¤ì¯×l¥Íª«§t¶uµ¸¦Xª«§@¬°L-¤þ¥æà»E¦X¶Ê¤Æ¾¯ Guaiacolate derivatives-containing sodium complexes as catalysts for L-lactide polymerization |
14 | §tñQÓi°t¦ì°ò¤§¶u¿ù¤Æ¦Xª«¦b¨Å»Ä¥æà»E¦X¤ÏÀ³ Ring‑opening polymerization of L‑lactide by using sodium complexes bearing amide as catalysts in high polar solvent |
15 | §tСÔr°t¦ì°ò¤§Ügª÷ÄÝ¿ù¤Æ¦Xª«¦b§Ütriple-negative breast-cancer cells¬¡©Ê´ú¸Õ Titanium complexes bearing 2,6-bis(o-hydroxyalkyl) pyridine ligands in vitro cytotoxicity against triple-negative breast-cancer cells |
16 | °ª¦h¤À´²«ü¼Æ»E¨Å»Äªº¦X¦¨¤Î¨ä§@¬°¾®½¦¹q¸Ñ½è¦b¬V®Æ±Ó¤Æ¤Ó¶§¯à¹q¦À»s³y¤¤ªºÀ³¥Î Synthesis of high polydispersity index polylactic acid and its application as gel electrolyte towards fabrication of dye‑sensitized solar cells |
17 | §tÂùýmÐüªº¤T®Ö¾T°t¦Xª«¦b£`-¤v¤ºà¶}Àô»E¦X¤¤ªº¨ó¦P§@¥Î Collaboration between Trinuclear Aluminum Complexes Bearing Bipyrazoles in the Ring-Opening Polymerization of £`-Caprolactone |
18 | BrÈûnsted»Ä/ºÒ¤GºÒ²m¼ÒÀÀ¨ü®À¸ô©ö´µ¹ï¼Ë¤ÏÀ³ªº¨ó¦P¶Ê¤Æ Synergistic Catalysis by BrÈûnsted Acid/Carbodicarbene Mimicking Frustrated Lewis Pair-Like Reactivity |
19 | Synthesis of high polydispersity index polylactic acid and its application as gel electrolyte towards fabrication of dye-sensitized solar cells Synthesis of high polydispersity index polylactic acid and its application as gel electrolyte towards fabrication of dye-sensitized solar cells |
20 | §týmÔrl¥Íª«°t¦ì°ò¤§¾N¿ù¤Æ¦Xª«»PÀô¤v¤ºà©M¨Å»Ä¥æà»E¦X¤ÏÀ³¤§¬ã¨s Synthesis of zinc complexes bearing pyridine derivatives and their application of £`-caprolactone and L-Lactide polymerization |
21 | ¥Î§týmÐü°t¦ì°ò¤§¾T¶Ê¤Æ¾¯¶i¦æÀô¤v¤ºà¡A¨Å»Ä¥æà¡A»P¬Ñ¤ºà»E¦X¤ÏÀ³¤§¤ñ¸û Comparison study of £`-caprolactone, L-lactide, and £`-decalactone polymerizations using aluminum complexes bearing pyrazole derivatives, and synthesis of polylactide-gradual-poly-£`-caprolactone copolymer |
22 | Àu¿ï´áÂøÀô°t¦ì°ò·f°t¾T¶Ê¤Æ¾¯À³¥Î¦bÀô¤v¤ºà»P¨Å»Ä¥æà»E¦X¤ÏÀ³ N-heterocyclic ligand optimization for aluminum complexes in £`-caprolactone and L-Lactide polymerization |
23 | ¨ã¤¶êÀô»P¤»¶êÀô§Æ¤ÒÆP°t¦ì°ò¤§Áâª÷Äݶʤƾ¯¦b¨Å»Ä¥æà¶}Àô»E¦X¤ÏÀ³ªº¤ñ¸û Comparison of L-lactide polymerization by using magnesium complexes bearing 2-(arylideneamino)phenolate and 2-((arylimino)methyl)phenolate ligands |
24 | Üg¿ù¦Xª«¦b¨Å»Ä¥æà»PÀô¤v¤ºà¶}Àô»E¤ÏÀ³¤§À³¥Î Titanium complexes bearing 2,6-Bis(o-hydroxyalkyl)pyridine ligands in the ring-opening polymerization of L-Lactide and £`-caprolactone |
25 | §Q¥Îpyrazole°t¦ì°ò¨Ó´£¤ÉTiOPr4¦b¨Å»Ä¥æà¶}Àô»E¦X¤ÏÀ³¤§¬¡©Ê¡G¥æ¤¬§@¥Î Use of pyrazoles as ligands greatly enhances the catalytic activity of titanium iso-propoxide for the ring-opening polymerization of L-lactide: a cooperation effect |
26 | ¨¾¬Ì¤pÀ°¤â¡G°®¬~¤â»P®ø¬r²G Epidemic prevention helper: dry hands and disinfectant |
27 | §t2-phenylbenzothiazole°t¦ì°ò¤§Üj¿ù¤Æ¦Xª«¤§¦X¦¨»P¦bSuzuki¡VMiyaura½¢¦X¤ÏÀ³¤§À³¥Î Synthesis of a palladium complex bearing 2-phenylbenzothiazole and its application to Suzuki¡VMiyaura coupling reaction |
28 | ¥ÎNHC»É¶Ê¤Æ¾¯¶i¦æÂIÀ»¤ÏÀ³¤§¾÷¨î±´°Q¡G³±Â÷¤l®ÄÀ³ Mechanistic Study in Click Reactions by Using (N‑Heterocyclic carbene)Copper(I) Complexes: Anionic Effects |
29 | ¤»Àô¾Tª÷ÄݤƦXª«¦bÀô¤v¤ºàªºÀu¤Æ Optimization of six-membered ring aluminum complexes in £`-caprolactone polymerization |
30 | ¦bÀô¤v¤ºà¶}Àô»E¦X¤ÏÀ³¨ã°ª®Ä²v¤§§t2-(aminomethylene)malonate °t¦ì°ò¤§·s¿o¾Tª÷ÄÝ¿ù¤Æ¦Xª« Novel aluminum complexes bearing 2-(aminomethylene)malonate ligands with high efficiency and controllability in ring-opening polymerization of epsilon-caprolactone |
31 | §tNNO-¤T°t¦ìÓif×ô°t¦ì°ò¤§¾Nª÷ÄÝ¿ù¤Æ¦Xª«¤§©M¦X¦¨¡B©Ê½è¤ÀªR»P¨Å»Ä¥æà»E¦X¤ÏÀ³¤§À³¥Î Synthesis and Characterization of N,N,O-Tridentate Aminophenolate Zinc Complexes and Their Catalysis in the Ring-Opening Polymerization of Lactides. |
32 | ¦b¶}Àô»E¦X¤ÏÀ³ªº¥ý¶i¶Ê¤Æ¾¯ Advanced Catalysts in Ring-Opening Polymerization of Cyclic Esters |
33 | f°ò¹]¥d»«¡G¹ï¨Å»Ä¥æà¶}Àô»E¦X¤ÏÀ³¦³°ª®Ä²v¤§¶Ê¤Æ¾¯ Benzannulated N-heterocyclic plumbylene: An efficient catalyst in ring opening polymerization of L-lactide |
34 | ´£¤É§t§Æ¤ÒÆP°t¦ì°ò¤§¾N¶Ê¤Æ¾¯¦bÀô¤v¤ºà¶}Àô»E¦X¤ÏÀ³¡G¤¶êÀô¨t²Î Improvement in zinc complexes bearing Schiff base in ring-opening polymerization of £`-caprolactone: A five-membered ring system |
35 | Âù¥\¯à¾N¶Ê¤Æ¾¯¡AÀ³¥Î©ó¨Å»Ä¥æà»E¦X¤ÏÀ³»P¤G®ñ¤ÆºÒ+Àô¤v²m®ñ¤Æª«¦@»E¤Æ¦Xª« Dual zinc catalysts for L-lactide polymerization and reaction of CO2 with cyclohexene oxide |
36 | §t§Æ¤ÒÆP°t¦ì°ò¤§¾Yª÷ÄݤƦXª«¤§¦X¦¨»P¦b¶}Àô»E¦X¤ÏÀ³¤§À³¥Î Synthesis, characterization, and catalytic activity of lithium complexes bearing NNO-tridentate Schiff base ligands toward ring-opening polymerization of L-lactide |
37 | ¼vÅTÂù×ôÜg¶Ê¤Æ¾¯¦bÀôàÃþ»E¦X¤ÏÀ³¤§¦]¯À Factors influencing catalytic behavior of titanium complexes bearing bisphenolate ligands toward ring-opening polymerization of L-lactide and £`-caprolactone |
38 | ´£¤É§t§Æ¤ÒÆP°t¦ì°ò¤§Ügª÷Äݶʤƾ¯¦b¶}Àô»E¦X¤ÏÀ³¤§¬¡©Ê Improvement in titanium complexes supported by Schiff bases in ring-opening polymerization of cyclic esters: ONO-tridentate Schiff bases |
39 | ¨Ï¥Î¤À¤l¿z§ïµ½¤£¹ïºÙ¤G¨ÈÓiªº¦X¦¨¤Î¨ä¾Y¿ù¦Xª« Improved Synthesis of Unsymmetrical N-Aryl-N¡¬-alkylpyridyl £]-Diketimines Using Molecular Sieves and their Lithium Complexes |
40 | ´£¤É§t§Æ¤ÒÆP°t¦ì°ò¤§¾Tª÷Äݶʤƾ¯¦bÀô¤v¤ºà»E¦X¤ÏÀ³¤§¬¡©Ê Improvement in aluminum complexes bearing a Schiff base in ring-opening polymerization of £`-caprolactone: the synergy of the N,S-Schiff base in a five-membered ring aluminum system |
41 | ¥|®ÖÅK²¸¾J²§Ùæ°ò¥¨Àô¿ù¦Xª«ªº³v¨B¤Î¦Û²Õ¸Ë¦X¦¨ Stepwise and Self-Assembly Synthesis of Tetranuclear Iron¡VThiolate¡VDiisocyanide Metallocyclophane Complexes |
42 | Âù®Ö®ÄÀ³¤§¬ã¨s¡G¾Tª÷Äݶʤƾ¯À³¥Î¦bÀô¤v¤ºà¤§¶}Àô»E¦X¤ÏÀ³ Investigation of the dinuclear effect of aluminum complexes in the ring-opening polymerization of epsilon-caprolactone |
43 | ¤£¹ïºÙ¤G¨ÈÓi»É¤Æ¦Xª«ªº¤ÏÀ³©Ê¬ã¨s:îg¦XÀôªº®ÄÀ³ Reactivity Study of Unsymmetrical beta-Diketiminato Copper(I) Complexes: Effect of the Chelating Ring |
44 | ´£¤É§t§Æ¤ÒÆP¾Tª÷Äݶʤƾ¯À³¥Î¦bÀô¤v¤ºà¤§¶}Àô»E¦X¤ÏÀ³ Improvement in Aluminum Complexes Bearing Schiff Bases in Ring-Opening Polymerization of epsilon-Caprolactone: A Five-Membered-Ring System |
45 | ´£¤É¾T¶Ê¤Æ¾¯¹ïÀô¤v¤ºà»E¦X¤ÏÀ³ªº¬¡©Ê Enhanced Catalytic Activity of Aluminum Complexes for the Ring-Opening Polymerization of £`‑Caprolactone |
46 | Length effect of methoxy poly(ethylene oxide)-b-[poly(£`-caprolactone)-g-poly(methacrylic acid)] copolymers on cisplatin delivery Length effect of methoxy poly(ethylene oxide)-b-[poly(£`-caprolactone)-g-poly(methacrylic acid)] copolymers on cisplatin delivery |
47 | §Q¥ÎÂù¦X¨t²Î§ïµ½¨ã§Æ¤ÒÆP°t¦ì°ò¤§Ügª÷Äݶʤƾ¯¦b¨Å»Ä¥æà»E¦X¤ÏÀ³ Improvement in Titanium Complexes Bearing Schiff Base Ligands in the Ring-Opening Polymerization of L-Lactide: A Dinuclear System with Hydrazine-Bridging Schiff Base Ligands |
48 | ¦X¦¨¨ã§Æ¤ÒÆP°t¦ì°ò¤§¶uª÷Äݶʤƾ¯»P¦b¨Å»Ä¥æà»E¦X¤ÏÀ³ªºÀ³¥Î Synthesis of Sodium Complexes Supported with NNO-Tridentate Schiff Base Ligands and Their Applications in the Ring- Opening Polymerization of L-Lactide |
49 | ¥H¤£¹ïºÙ¤G¨ÈÓi°t¦ì°ò¾N¶Ê¤Æ¾¯¹ï¨Å»Ä¥æà¤Î»E¦X¤ÏÀ³ Steric and chelating ring concerns on the L-lactide polymerization by asymmetric b-diketiminato zinc complexes |
50 | ¨ãନÈÓi¤§¶uª÷ÄÝ¿ù¤Æ¦Xª«¤§¦X¦¨»P¹ï¨Å»Ä¥æ઺»E¦X¤ÏÀ³´ú¸Õ Synthesis, characterization, and catalytic activity of sodium ketminiate complexes toward the ringopening polymerization of L-lactide |
51 | ¦X¦¨¨ãf¦}噻Ðü°t¦ì°ò¤§¾Tª÷Äݶʤƾ¯»P¹ïÀô¤v¤ºà»P¨Å»Ä¥æà»E¦X¤ÏÀ³ªºÀ³¥Î The ring-opening polymerization of £`-caprolactone and L-lactide using aluminum complexes bearing benzothiazole ligands as catalysts |
52 | Àu¿ïÂù¤ú°t¬°°ò»P¤B°ò锂¨Ó´£¤É¹ï¨Å»Ä¥æध¶}Àô»E¦X¤ÏÀ³ Improving the Ring-opening Polymerization of L-Lactide Using n-Butyl Lithium with Various Bidentate Ligands |
53 | The synthesis and comparison of poly(methacrylic acid)¡Vpoly(3-caprolactone) block copolymers with and without symmetrical disulfide linkages in the center for enhanced cellular uptake The synthesis and comparison of poly(methacrylic acid)¡Vpoly(3-caprolactone) block copolymers with and without symmetrical disulfide linkages in the center for enhanced cellular uptake |
54 | ¥HÂîª÷Äݶʤƾ¯¶i¦æ¨Å»Ä¥æà»PÀô¤v¤ºà¤§»E¦X¤ÏÀ³¤ñ¸û Comparative study of ring-opening polymerization of L-lactide and 3-caprolactone using zirconium hexadentate bis(aminophenolate) complexes as catalysts |
55 | ¨ãନÈÓi°t¦ì°ò¤§¾Tª÷Äݶʤƾ¯¦bÀô¤v¤ºà»E¦X¤ÏÀ³¤WªºÀ³¥Î A closer look at £`-caprolactone polymerization catalyzed by alkyl aluminum complexes: the effect of induction period on overall catalytic activity |
56 | ¨ãÓi°t¦ì°ò¤§¾Tª÷Äݶʤƾ¯¦bÀô¤v¤ºà»E¦X¤ÏÀ³¤WªºÀ³¥Î Optimizing ring-opening polymerization of e-caprolactone by using aluminum complexes bearing amide as catalysts and their application in synthesizing poly-e-caprolactone with special initiators and other polycycloesters |
57 | ¨ãÂùf×ô°t¦ì°ò¤§¾Tª÷Äݶʤƾ¯¦bÀô¤v¤ºà»E¦X¤ÏÀ³¤WªºÀ³¥Î Coordinating effect in ring-opening polymerization of 3-caprolactone using aluminum complexes bearing bisphenolate as catalysts |
58 | Comparing L-lactide and 3-caprolactone polymerization by using aluminum complexes bearing ketiminate ligands: steric, electronic, and chelating effects Comparing L-lactide and 3-caprolactone polymerization by using aluminum complexes bearing ketiminate ligands: steric, electronic, and chelating effects |
59 | Comparative Study of Aluminum Complexes Bearing N,O- and N,SSchiff Base in Ring-Opening Polymerization of £`‑Caprolactone and L‑Lactide Comparative Study of Aluminum Complexes Bearing N,O- and N,SSchiff Base in Ring-Opening Polymerization of £`‑Caprolactone and L‑Lactide |
60 | »s³Æ¦hÁÞÅé¦@»E¦Xª«¤Î¨ä¥]ÂЧÜÀùÃĪ«¦b¼Ð¹vCD44¨üÅé¤Wªºªí²{ Preparation of Chondroitin Sulfate-g-Poly(£`-Caprolactone) Copolymers as a CD44-Targeted Vehicle for Enhanced Intracellular Uptake. |
61 | ¨ãÓi°òf×ô¤§Ügª÷ÄÝ¿ù¦Xª«¦b¨Å»Ä¥æà»PÀô¤v¤ºà¶Ê¤Æ»E¦X¤ÏÀ³¤Wªº¶Ê¤Æ§ï¨} Catalytic improvement of titanium complexes bearing bearingbis(aminophenolate) in ring-opening polymerization of l-lactide and e-caprolactone |
62 | ¨ã¸»Ä¼Ð©wªº²¸»Ä¤Æ³n°©¯À-»E¤v¤ºà-¦ãÅð¯Àªº©`¦Ì·LM²É¤l¤§»s³Æ»P¤ÀªR Folate-mediated and doxorubicin-conjugated poly(3-caprolactone)-g-chondroitin sulfate copolymers for enhanced intracellular drug delivery |
63 | ¤@Ó²³æªºÄvª§©Ê´ú¸Õ¨Ó°»´ú»É²¸¾J°ò¤À¤lÁLªº°t¦ì°ò¥æ´« A simple competition assay to probe pentacopper(I)-thiolato cluster ligand exchange |
64 | ´£¤É¤G²§¨¯»Ä¿ü¤§¶Ê¤Æ¬¡©Ê¹ïÀô¤v¤ºà»P¨Å»Ä¥æà¶i¦æ¶}Àô»E¦X¤ÏÀ³ Improving the ring-opening polymerization of e-caprolactone and L-lactide using stannous octanoate |
65 | ªÚ»³¿¤Æª«»P²¸¯»¶i¦æ°¸¦X¤ÏÀ³¤¤§Q¥ÎÆP±±¨î¤GÀô¤G²¸îÅ»P¤GÀô²¸îŨâºØ²£ª«ªº¤ñ¨Ò Use of Base Control To Provide High Selectivity between Diaryl Thioether and Diaryl Disulfide for C−S Coupling Reactions of Aryl Halides and Sulfur and a Mechanistic Study |
66 | Tris(1,2-dimethoxyethane-j2O,O0)- iodidocalcium iodide Tris(1,2-dimethoxyethane-j2O,O0)- iodidocalcium iodide |
67 | Synthesis, characterization and catalytic activity of lithium and sodium iminophenoxide complexes towards ring-opening polymerization of L-lactide Synthesis, characterization and catalytic activity of lithium and sodium iminophenoxide complexes towards ring-opening polymerization of L-lactide |
68 | ¥Îf×ôÁâ¿ù¤Æ¦Xª«¹ïÀô¤v¤ºà¬¶i¦æ¶}Àô»E¦X¤ÏÀ³ e-Caprolactone Polymerization under Air by the Biocatalyst: Magnesium 2,6-Di-tert-butyl-4-Methylphenoxide |
69 | §Q¥Î²K¥[DMFDMA¸Õ¾¯´£¤É²§¨¯»Ä¿ü¶Ê¤ÆÀô¤v¤ºà¬»P¨Å»Ä¥æ઺¶}Àô»E¦X¤ÏÀ³ In Situ Formation of Sn(IV) Catalyst with Increased Activity in e-Caprolactone and L-Lactide Polymerization Using Stannous(II) 2-Ethylhexanoate |
70 | ¾Y¡B¶u¡BÁâ¡B¶t¿ù¤Æ¦Xª«¦b¨Å»Ä¥æà»E¦X¤ÏÀ³¤§¤ñ¸û Comparative Study of Lactide Polymerization with Lithium, Sodium, Magnesium, and Calcium Complexes of BHT |
71 | f×ô¾N¤Æ¦Xª«§¨±a¨â¤À¤l´â¥é Bis[2-({[2-(methylsulfanyl)phenyl]imino}methyl)phenolato- £e2N,O]zinc chloroform disolvate |
72 | ¨ÈÓif×ôÜgª÷Äݤƪ«¤§³]p¡B¦X¦¨»P¸ÓÁÙ»E¦X¤ÏÀ³¤§À³¥Î Synthesis, Characterization, and Catalytic Activity of Titanium Iminophenoxide Complexes in Relation to the Ring-Opening Polymerization of L-Lactide and e-Caprolactone |
73 | §t³±Â÷¤l[HB(3,5-Me2Pz)3]- °t¦ì°òªº»É(I)¨Èµv»Ä®Ú¤Æ¦Xª«:¤@ӻɨȵv»Ä®Ú¥Í¤ÆÀÀºAªº¦X¦¨¼Ò«¬ Copper(I)-Nitro Complex with Anion [HB(3,5-Me2Pz)3]- Ligand: A Synthetic Model for the Copper Nitrite Reductase Active Site |
74 | Comparative study of lactide polymerization by zinc alkoxide complexes with a b-diketiminato ligand bearing different substituents Comparative study of lactide polymerization by zinc alkoxide complexes with a b-diketiminato ligand bearing different substituents |
75 | Synthesis, characterization and catalytic activity of magnesium and zinc aminophenoxide complexes: Catalysts for ring-opening polymerization of L-lactide Synthesis, characterization and catalytic activity of magnesium and zinc aminophenoxide complexes: Catalysts for ring-opening polymerization of L-lactide |
Project
NO |
YEAR ¡X Source ¡X No ¡X Type
Project Name
|
Duration |
---|---|---|
1 |
113 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSTC113-2113-M-037-001 ¡X 1 Ó¤H«¬
§Q¥Î¤£¦Pµ¦²¤¨Ó³]pª÷Äݶʤƾ¯¥H´£¤É¦bÀôàÃþ³æÅé¶}Àô»E¦X¤ÏÀ³(3/3)( )
|
2024/08/01 ~ 2025/07/31 |
2 |
113 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSTC113-2113-M-037-009 ¡X 2 ¾ã¦X«¬
»EîÅ°©¬[»E¦Xª«¤§¦X¦¨¤èªk³]p»P¦¹§÷®Æ¦b¶Ê¤Æ¤ÏÀ³»P¤ÀªR§Þ³N¤§À³¥Î¶}µo-»EîÅ°©¬[»E¦Xª«¤§¦X¦¨¤èªk³]p»P¦¹§÷®Æ¦b¶Ê¤Æ¤ÏÀ³»P¤ÀªR§Þ³N¤§À³¥Î¶}µo(2/3)( )
|
2024/08/01 ~ 2025/07/31 |
3 |
113 ¡X NK °ªÂå-¤¤¤s¦X§@pµe ¡X NK113P24 ¡X 1 Ó¤H«¬
°ò©ó»E(£`-¤v¤ºà)®ÖºÏ¦@®¶³y¼v¾¯ªº¦X¦¨»PŲ©w(Synthesis and Characterization of Poly(£`-caprolactone)-Based Magnetic Resonance Imaging Contrast Agents)
|
2024/01/01 ~ 2024/12/31 |
4 |
113 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X NSTC113-2811-M-037-005 ¡X 9 ³Õ¤h«á¬ã¨sû
³Õ¤h¯Å¬ã¨s¤Hû--ªi¨Fº¿¡B®wº¿¡Bè¶ð( )
|
2024/08/01 ~ 2025/07/31 |
5 |
112 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSTC112-2113-M-037-017 ¡X 2 ¾ã¦X«¬
»EîÅ°©¬[»E¦Xª«¤§¦X¦¨¤èªk³]p»P¦¹§÷®Æ¦b¶Ê¤Æ¤ÏÀ³»P¤ÀªR§Þ³N¤§À³¥Î¶}µo-»EîÅ°©¬[»E¦Xª«¤§¦X¦¨¤èªk³]p»P¦¹§÷®Æ¦b¶Ê¤Æ¤ÏÀ³»P¤ÀªR§Þ³N¤§À³¥Î¶}µo(1/3)( )
|
2023/08/01 ~ 2024/07/31 |
6 |
112 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSTC112-2113-M-037-023 ¡X 1 Ó¤H«¬
§Q¥Î¤£¦Pµ¦²¤¨Ó³]pª÷Äݶʤƾ¯¥H´£¤É¦bÀôàÃþ³æÅé¶}Àô»E¦X¤ÏÀ³(2/3)( )
|
2023/08/01 ~ 2024/07/31 |
7 |
112 ¡X NK °ªÂå-¤¤¤s¦X§@pµe ¡X ¡X 1 Ó¤H«¬
¶}µo·s«¬»E¦XÀô®ñ³æÅé¤èªk»P³]p¦X¦¨§t¬tÃĪ«ÄÀ©ñ§÷®Æ(Development of a new method for polymerizing epoxy monomers and design and synthesis of fluorine-containing drug-releasing materials)
|
2023/01/01 ~ 2023/12/31 |
8 |
112 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X NSTC113-2811-M-037-001 ¡X 9 ³Õ¤h«á¬ã¨sû
³Õ¤h¯Å¬ã¨s¤Hû--ªi¨Fº¿¡B®wº¿¡Bè¶ð( )
|
2024/01/01 ~ 2024/07/31 |
9 |
112 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X NSTC113-2813-C-037-090-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
113¦~«×¤j±M¾Ç¥Í¬ã¨spµe-¶À´´(»ùÛ4)( )
|
2024/07/01 ~ 2025/02/28 |
10 |
111 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST111-2113-M-037-007 ¡X 1 Ó¤H«¬
§Q¥Î¤£¦Pµ¦²¤¨Ó³]pª÷Äݶʤƾ¯¥H´£¤É¦bÀôàÃþ³æÅé¶}Àô»E¦X¤ÏÀ³(1/3)( )
|
2022/08/01 ~ 2023/10/31 |
11 |
111 ¡X NK °ªÂå-¤¤¤s¦X§@pµe ¡X ¡X 1 Ó¤H«¬
°ò©óÐ`肽ªº®ÖºÏ¦@®¶³y¼v¾¯ªº§@¥Î¾÷²z¤Î§ï¶i¤§¬ã¨s(Investigation of the action mechanism and improvement of peptide-based magnetic resonance imaging contrast agents)
|
2022/01/01 ~ 2022/12/31 |
12 |
111 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X NSTC112-2813-C-037-080-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
112¦~«×¤j±M¾Ç¥Í¬ã¨spµe-¾Gõ¦w(Âå¤Æ3)( )
|
2023/07/01 ~ 2024/02/29 |
13 |
111 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X NSTC112-2813-C-037-085-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
112¦~«×¤j±M¾Ç¥Í¬ã¨spµe-¶À´´(»ùÛ3)( )
|
2023/07/01 ~ 2024/02/29 |
14 |
110 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST110-2113-M-037-019 ¡X 1 Ó¤H«¬
ÀôàÃþ¶}Àô»E¦X¤ÏÀ³¤§¶Ê¤Æ¾¯³]p¡B¦X¦¨»PÀ³¥Î(3/3)( )
|
2021/08/01 ~ 2022/07/31 |
15 |
110 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST110-2811-M-037-003 ¡X 9 ³Õ¤h«á¬ã¨sû
³Õ¤h«á¬ã¨sû--Someswararao kosuru( )
|
2021/08/01 ~ 2022/07/31 |
16 |
110 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST111-2813-C-037-004-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
111¦~«×¤j±M¾Ç¥Í¬ã¨spµe-§õÞW(Âå¤Æ3)( )
|
2022/07/01 ~ 2023/02/28 |
17 |
109 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST109-2113-M-037-006 ¡X 1 Ó¤H«¬
ÀôàÃþ¶}Àô»E¦X¤ÏÀ³¤§¶Ê¤Æ¾¯³]p¡B¦X¦¨»PÀ³¥Î(2/3)( )
|
2020/08/01 ~ 2021/10/31 |
18 |
109 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST109-2811-M-037-504 ¡X 9 ³Õ¤h«á¬ã¨sû
³Õ¤h«á¬ã¨sû-Someswararao Kosuru( )
|
2020/08/01 ~ 2021/07/31 |
19 |
109 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST110-2813-C-037-004-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
110¦~«×¤j±M¾Ç¥Í¬ã¨spµe-¤ýµµªÚ(Âå¤Æ3)( )
|
2021/07/01 ~ 2022/02/28 |
20 |
108 ¡X DK «e¤«ÂI(ì®Õ°|) ¡X KMU-DK(¾ã)109004~2 ¡X
PEG´À¥Nª«¡u»E¥Ìªo¡v(PolyGlycerol, PG)ªº¦X¦¨»P¶}µo( )
|
2020/01/01 ~ 2020/12/31 |
21 |
108 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST108-2113-M-037-017 ¡X 1 Ó¤H«¬
ÀôàÃþ¶}Àô»E¦X¤ÏÀ³¤§¶Ê¤Æ¾¯³]p¡B¦X¦¨»PÀ³¥Î(1/3)( )
|
2019/08/01 ~ 2020/07/31 |
22 |
108 ¡X NK °ªÂå-¤¤¤s¦X§@pµe ¡X NSYSUKMU108-I002-2 ¡X 2 ¾ã¦X«¬
§Q¥Î°ª¤À¤l§÷®Æ¥]ÂЧt¿ø©ÎÐÁª÷ÄݮֺϦ@®¶Åã¼v¾¯¤§¬ã¨s( )
|
2019/01/01 ~ 2019/12/31 |
23 |
108 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST109-2811-M-037-500 ¡X 9 ³Õ¤h«á¬ã¨sû
³Õ¤h«á¬ã¨sû--Veerabhadraswamy B N( )
|
2020/07/01 ~ 2020/12/31 |
24 |
108 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST109-2813-C-037-063-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
109¦~«×¤j±M¾Ç¥Í¬ã¨spµe-ªô¨ä·¬(Âå¤Æ3)( )
|
2020/07/01 ~ 2021/02/28 |
25 |
107 ¡X NK °ªÂå-¤¤¤s¦X§@pµe ¡X NSYSUKMU107-P010 ¡X 1 Ó¤H«¬
¦X¦¨©x¯à°ò¤Æ»EàÃþ³æÅé¡B»E¦Xª«»P¦b¥ÍÂå§÷®Æ¤WªºÀ³¥Î( )
|
2018/01/01 ~ 2018/12/31 |
26 |
107 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST107-2113-M-037-001 ¡X 1 Ó¤H«¬
¬ãµo´£¤É¾Tª÷Äݶʤƾ¯À³¥Î¦bÀôàÃþ»E¦X¤ÏÀ³¬¡©Ê¤§¤èªk(3/3)( )
|
2018/08/01 ~ 2019/07/31 |
27 |
106 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST106-2113-M-037-002 ¡X 1 Ó¤H«¬
¬ãµo´£¤É¾Tª÷Äݶʤƾ¯À³¥Î¦bÀôàÃþ»E¦X¤ÏÀ³¬¡©Ê¤§¤èªk(2/3)( )
|
2017/08/01 ~ 2018/09/30 |
28 |
106 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST107-2813-C-037-008-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
107¦~«×¤j±M¾Ç¥Í¬ã¨spµe-¿àªY§±(Âå¤Æ3)( )
|
2018/07/01 ~ 2019/02/28 |
29 |
105 ¡X NK °ªÂå-¤¤¤s¦X§@pµe ¡X ¡X 2 ¾ã¦X«¬
§t硫»P®ñ°t¦ì°ò¤§¾T金ÄÝ¿ù¤Æ¦Xª«¤§¦X¦¨»P¨ä»E¦X¥ÍÂå§÷料¤§À³¥Î( )
|
2016/01/01 ~ 2016/12/31 |
30 |
105 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST105-2113-M-037-007 ¡X 1 Ó¤H«¬
¬ãµo´£¤É¾Tª÷Äݶʤƾ¯À³¥Î¦bÀôàÃþ»E¦X¤ÏÀ³¬¡©Ê¤§¤èªk(1/3)( )
|
2016/08/01 ~ 2017/07/31 |
31 |
105 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST105-2738-M-037-001 ¡X
¬ãµo´£¤É¾Tª÷Äݶʤƾ¯À³¥Î¦bÀôàÃþ»E¦X¤ÏÀ³¬¡©Ê¤§¤èªk( )
|
2016/08/01 ~ 2017/07/31 |
32 |
105 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST106-2813-C-037-031-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
106¦~«×¤j±M¾Ç¥Í¬ã¨spµe-³\³ì¯ô(Âå¤Æ3)( )
|
2017/07/01 ~ 2018/02/28 |
33 |
104 ¡X NK °ªÂå-¤¤¤s¦X§@pµe ¡X NSYSUKMU104-P006 ¡X 1 Ó¤H«¬
¾TÂùª÷ÄÝ¿ù¤Æ¦Xª«¤§³]p¡B¦X¦¨»P¦b»E¦X¥ÍÂå§÷®ÆªºÀ³¥Î( )
|
2015/01/01 ~ 2015/12/31 |
34 |
104 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST104-2113-M-037-010 ¡X 1 Ó¤H«¬
¶Ê¤Æ¾¯ªº´X¦óµ²ºc¹ï¨ä¶Ê¤Æ¬¡©Êªº¼vÅT( )
|
2015/08/01 ~ 2016/07/31 |
35 |
104 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST105-2815-C-037-010-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
105¦~«×¤j±M¾Ç¥Í¬ã¨spµe-¶À¬ã·O(À³¤Æ3)( )
|
2016/07/01 ~ 2017/02/28 |
36 |
103 ¡X NK °ªÂå-¤¤¤s¦X§@pµe ¡X NSYSUKMU103-I004-3 ¡X 2 ¾ã¦X«¬
¨ã§Æ¤ÒÆP»P²¸¤Æ§Æ¤ÒÆP¤§¾Tª÷ÄÝ¿ù¤Æ¦Xª«¦b¶}Àô¨ã©M¶Ê¤Æ¤ÏÀ³¤§¤ñ¸û( )
|
2014/01/01 ~ 2014/12/31 |
37 |
103 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSC102-2113-M-037-009-MY2 ¡X 1 Ó¤H«¬
(I)§Q¥Î¦³¾÷ª÷Äݶʤƾ¯¶i¦æºÒ-ÁCÁä¥Í¦¨¤ÏÀ³¤§¬ã¨s;(II)ªÚ»³¿¤Æª«»P²¸¸Õ¾¯¶i¦æºÒ-²¸Áä¥Í¦¨¤ÏÀ³¤§§ï¨}(2/2)( )
|
2014/08/01 ~ 2015/07/31 |
38 |
103 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X 104-2815-C-037-033-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
104¦~«×¤j±M¾Ç¥Í¬ã¨spµe-´¿³ß«C(À³¤Æ3)( )
|
2015/07/01 ~ 2016/02/29 |
39 |
102 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSC102-2113-M-037-009-MY2 ¡X 1 Ó¤H«¬
(I)§Q¥Î¦³¾÷ª÷Äݶʤƾ¯¶i¦æºÒ-ÁCÁä¥Í¦¨¤ÏÀ³¤§¬ã¨s;(II)ªÚ»³¿¤Æª«»P²¸¸Õ¾¯¶i¦æºÒ-²¸Áä¥Í¦¨¤ÏÀ³¤§§ï¨}(1/2)( )
|
2013/08/01 ~ 2015/07/31 |
40 |
101 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSC101-2113-M-037-009 ¡X 1 Ó¤H«¬
1§Q¥ÎªÚ»ßm³¿¤Æª«»P²¸¯»¦X¦¨¤£¹ïºÙÂùªÚ»ßm²¸îŤ§·sµ¦²¤2.¨ã¤»°t¦ìÓi°ò×ô°t¦ì°òèp¤Æ¦Xª«¤§¦X¦¨,Ų©w»P¹ï¨Å»Ä¥æà»PÀô¤v¤ºà»E¦X¤ÏÀ³¶Ê¤Æ¤§¬ã¨s( )
|
2012/08/01 ~ 2013/07/31 |
41 |
101 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X 102-2815-C-037-002-M ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
102¦~«×¤j±M¾Ç¥Í¬ã¨spµe-³¯¨È§Í(À³¤Æ3)( )
|
2013/07/01 ~ 2014/02/28 |
42 |
100 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSC99-2113-M-037-012-MY2 ¡X 1 Ó¤H«¬
·s¿o»Éª÷ÄÝ¿ù¦Xª«¤§¦X¦¨¡BŲ©w¥H¤Î¶Ê¤ÆªÚ»±ÚºÒ´á»PºÒÁC¤§½¢¦X¤ÏÀ³(2/2)( )
|
2011/08/01 ~ 2012/07/31 |
43 |
099 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSC99-2113-M-037-012-MY2 ¡X 1 Ó¤H«¬
·s¿o»Éª÷ÄÝ¿ù¦Xª«¤§¦X¦¨¡BŲ©w¥H¤Î¶Ê¤ÆªÚ»±ÚºÒ´á»PºÒÁC¤§½¢¦X¤ÏÀ³(1/2)( )
|
2010/08/01 ~ 2012/07/31 |
44 |
099 ¡X Q ·s¸u±Ð®vpµe(®Õ¤º) ¡X Q100011 ¡X
§ï¨}²§¨¯»Ä¨È¿ü¦b¶}Àô»E¦X¤ÏÀ³ªº¬¡©Ê( )
|
2011/01/01 ~ 2011/12/31 |
45 |
098 ¡X Q ·s¸u±Ð®vpµe(®Õ¤º) ¡X KMU-Q099030 ¡X
·s¿o¶tª÷Äݶʤƾ¯¤§³]p¦X¦¨»P¹ïÀôàÃþ³æÅé¶Ê¤ÆÀ³¥Î( )
|
2010/02/01 ~ 2010/12/31 |
Patent
NO | Patent Name | Country | Certified Date | Patent No |
---|---|---|---|---|
1 | §t¿ü¶Ê¤Æ¾¯¥Î©ó»Eà¤Æ¤ÏÀ³¤§¤èªk | ¤¤µØ¥Á°ê | 2014/01/21 | I423993 |
2 | §t¿ü¶Ê¤Æ¾¯¥Î©ó»Eà¤Æ¤ÏÀ³¤§¤èªk | ¬ü°ê | 2013/03/12 | 8,394,915 |
3 | §t®Þª¬¦@»Eª«·LMªºÂåÃIJզXª«¡B¥H¤Î¨ä»s³y¤èªk¡B¥Î³~ | ¤¤µØ¥Á°ê | 2014/11/11 | I459975 |