Education
School ¡X Major ¡X Degree | Duration |
---|---|
°ê¥ß¦¨¥\¤j¾Ç ¡X §÷®Æ¬ì¾Ç¤Î¤uµ{¾Ç¨t(²¦) ¡X ³Õ¤h Doctorate, Department of Materials Science and Engineering, National Cheng Kung University |
1994/09 ¡X 1999/06 |
°ê¥ß¦¨¥\¤j¾Ç ¡X ¸ê·½¤uµ{¾Ç¨t(²¦) ¡X ºÓ¤h Master, Department of Resources Engineering, National Cheng Kung University |
1992/09 ¡X 1994/06 |
ªF®ü¤j¾Ç ¡X ª«²z¾Ç¨t(²¦) ¡X ¾Ç¤h Bachelor, Department of Physics, Tunghai University |
1988/09 ¡X 1992/06 |
Intramural Experience
Office/Department/Institute | Position | Duration |
---|---|---|
»ùÛ«~¾Ç¨t Department of Fragrance and Cosmetic Science | Professor | 2015/10/01 ¡X |
»ùÛ«~¾Ç¨t Department of Fragrance and Cosmetic Science | Associate Professor | 2010/08/01 ¡X 2015/09/30 |
»ùÛ«~¾Ç¨t Department of Fragrance and Cosmetic Science | Assistant Professor | 2005/02/01 ¡X 2010/07/31 |
»ùÛ«~¾Ç¨t Department of Fragrance and Cosmetic Science | Assistant Professor | 2004/10/11 ¡X 2005/01/31 |
Extramural Experience
Discipline
NO | Discipline | Expertise |
---|---|---|
1 | ¤uµ{§Þ³NÃþ Engineering and Technology | §÷®Æ Materials |
Research & Technology Platform Open to the Outside
Interested Area(s)for Interdisciplinary Research
¦h¯Å¤Õ¥Íª«¬¡©Ê¬Á¼þ¡B·s«¬§½³¡ÃĪ«¶Ç¿é¨t²Î ( LDDS)¡B(¤ÆùÛ«~¡^§íµß§÷®Æ¶}µo¡B(¤ÆùÛ«~¡^¨¾ÅÎ¥]Âо¯«¬¡B§Ü¤fµÄµßì®Æ¿z¿ï¥¥x
Hierarchically Meso-Macroporous Bioactive Glass, Novel Local Drug delivery system (LDDS), (Cosmetics )Antibacterial Materials, (Cosmetics ) Sunscreen encapsulated & formulation, Anti-oral bacteria raw material screening platform
Area(s) of Expertise & Research
¦h¯Å¤Õ¥Íª«¬¡©Ê¬Á¼þ¡B·s«¬§½³¡ÃĪ«¶Ç¿é¨t²Î ( LDDS)¡B(¤ÆùÛ«~¡^§íµß§÷®Æ¶}µo¡B(¤ÆùÛ«~¡^¨¾ÅÎ¥]Âо¯«¬¡B§Ü¤fµÄµßì®Æ¿z¿ï¥¥x
Hierarchically Meso-Macroporous Bioactive Glass, Novel Local Drug delivery system (LDDS), (Cosmetics )Antibacterial Materials, (Cosmetics ) Sunscreen encapsulated & formulation, Anti-oral bacteria raw material screening platform
Publication
NO | Publication |
---|---|
1 | ¨Ï¥Î§t»È®ñ¤Æª¿°ò©`¦Ì½Æ¦Xª«80S/Ag°µ¬°©ñ½uµß¸s±ìµß§í¨î¾¯¤Î¨äÅé¥~¥Íª«¬¡©Ê¬ã¨s Silica-based silver nanocomposite 80S/Ag as Aggregatibacter actinomycetemcomitans inhibitor and its in vitro bioactivity |
2 | In Vitro Characterizations of Post-Crosslinked Gelatin-Based Microspheres Modified by Phosphatidylcholine or Diammonium Phosphate as Antibiotic Delivery Vehicles. In Vitro Characterizations of Post-Crosslinked Gelatin-Based Microspheres Modified by Phosphatidylcholine or Diammonium Phosphate as Antibiotic Delivery Vehicles. |
3 | Evaluation of in vitro bioactivity and angiogenesis-promoting effect for mesoporous bioactive glass codoped with copper and silver Evaluation of in vitro bioactivity and angiogenesis-promoting effect for mesoporous bioactive glass codoped with copper and silver |
4 | Synthesis, Characterization, and Bioactivity of Mesoporous Bioactive Glass Codoped with Zinc and Silver Synthesis, Characterization, and Bioactivity of Mesoporous Bioactive Glass Codoped with Zinc and Silver |
5 | Synergistic effect of drug/antibiotic-impregnated micro/nanohybrid mesoporous bioactive glass/calcium phosphate composite bone cement on antibacterial and osteoconductive activities. Synergistic effect of drug/antibiotic-impregnated micro/nanohybrid mesoporous bioactive glass/calcium phosphate composite bone cement on antibacterial and osteoconductive activities. |
6 | Copper-enhanced silver releasing from bimetal-containing bioactive glass (AgCu/80S) elicits antibacterial efficacy against drug-resistant Staphylococcus aureus Copper-enhanced silver releasing from bimetal-containing bioactive glass (AgCu/80S) elicits antibacterial efficacy against drug-resistant Staphylococcus aureus |
7 | Morphological Changes, Antibacterial Activity, and Cytotoxicity Characterization of Hydrothermally Synthesized Metal Ions-Incorporated Nanoapatites for Biomedical Application Morphological Changes, Antibacterial Activity, and Cytotoxicity Characterization of Hydrothermally Synthesized Metal Ions-Incorporated Nanoapatites for Biomedical Application |
8 | In Vitro Bioactivity and Antibacterial Effects of a Silver-Containing Mesoporous Bioactive Glass Film on the Surface of Titanium Implants In Vitro Bioactivity and Antibacterial Effects of a Silver-Containing Mesoporous Bioactive Glass Film on the Surface of Titanium Implants |
9 | Effects of AgNPs on the structure and anti-methicillin resistant Staphylococcus aureus (MRSA) properties of SiO2-CaO-P2O5 bioactive glass Effects of AgNPs on the structure and anti-methicillin resistant Staphylococcus aureus (MRSA) properties of SiO2-CaO-P2O5 bioactive glass |
10 | Antibacterial silver-containing mesoporous bioglass as a dentin remineralization agent in a microorganism-challenged environment Antibacterial silver-containing mesoporous bioglass as a dentin remineralization agent in a microorganism-challenged environment |
11 | In vitro and in vivo assessments of inspired ag/80S bioactive nanocomposites against carbapenem-resistant Klebsiella pneumoniae. In vitro and in vivo assessments of inspired ag/80S bioactive nanocomposites against carbapenem-resistant Klebsiella pneumoniae. |
12 | Synergistic Antibacterial Effect of Casein-AgNPs Combined with Tigecycline against Acinetobacter baumannii Synergistic Antibacterial Effect of Casein-AgNPs Combined with Tigecycline against Acinetobacter baumannii |
13 | ÁC¯×酰ÁxÆP©M I «¬½¦ì¬¡©Ê¥Íª«¤À¤l¦b»EîÅîÅତWªº±µªK®ÄªGµû»ù¡GÅé¥~©MÅ餺 Evaluation of the Grafting Efficacy of Active Biomolecules of Phosphatidylcholine and Type I Collagen on Polyether Ether Ketone: In Vitro and In Vivo |
14 | ªüÃQ»Ä±µªK¨x¯À°òÁC»Ä¶t°©¤ôªdªº±j«×©M¥Íª«¬Û®e©Ê Strength and Biocompatibility of Heparin-Based Calcium Phosphate Cement Grafted with Ferulic Acid |
15 | ¨x¯À§@¬°¥é¥Í¼ÒªO½Õ±±ÁC¦Ç¥Û©`¦Ì´Îªºªø¼e¤ñ¡G¦X¦¨©M¥Íª«¬Û®e©Ê¬ã¨s Heparin as a biomimetic template on nano-apatite rods with tunable aspect ratio: synthesis and biocompatibility |
16 | The Antibacterial and Remineralization Effect of Silver-Containing, Mesoporous Bioactive Glass Sealing and Er-YAG Laser on Dentinal Tubules, Treated in a Streptococcus mutans Cultivated Environment The Antibacterial and Remineralization Effect of Silver-Containing, Mesoporous Bioactive Glass Sealing and Er-YAG Laser on Dentinal Tubules, Treated in a Streptococcus mutans Cultivated Environment |
17 | Evaluation of antibacterial effects of matrix-induced silver ions against antibiotic-resistant ESKAPE pathogens Evaluation of antibacterial effects of matrix-induced silver ions against antibiotic-resistant ESKAPE pathogens |
18 | Synthesis of hierarchically mesoporous silica with encapsulated avobenzone as a UV protection filter Synthesis of hierarchically mesoporous silica with encapsulated avobenzone as a UV protection filter |
19 | Antibacterial activity of silver nanoparticles (AgNP) confined to mesostructured silica-based calcium phosphate against methicillin-resistant Staphylococcus aureus (MRSA) Antibacterial activity of silver nanoparticles (AgNP) confined to mesostructured silica-based calcium phosphate against methicillin-resistant Staphylococcus aureus (MRSA) |
20 | Structure-dependence of anti- methicillin-resistant staphylococcus aureus (MRSA) activity on ZnO-containing bioglass Structure-dependence of anti- methicillin-resistant staphylococcus aureus (MRSA) activity on ZnO-containing bioglass |
21 | Microwave assisted synthesis of negative-charge carbon dots with potential antibacterial activity against multi-drug resistant bacteria Microwave assisted synthesis of negative-charge carbon dots with potential antibacterial activity against multi-drug resistant bacteria |
22 | §Q¥Î·LM¹q°Ê¼hªRªkµ²¦X¿Ã¥úl¥Íªk´ú©w¬V¾v¾¯¤¤ªºphenylenediamines Determination of phenylenediamines in hair colors derivatizated with 5-(4, 6-dichlorotriazinyl) aminofluorescein via micellar electrokinetic chromatography |
23 | Antibacterial Activity of BSA-Capped Gold Nanoclusters against Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Intermediate Staphylococcus aureus (VISA) Antibacterial Activity of BSA-Capped Gold Nanoclusters against Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Intermediate Staphylococcus aureus (VISA) |
24 | Antibacterial activity of silver nanoparticles (AgNP) confined to mesostructured silica against methicillin-resistant Staphylococcus aureus (MRSA) Antibacterial activity of silver nanoparticles (AgNP) confined to mesostructured silica against methicillin-resistant Staphylococcus aureus (MRSA) |
25 | Antibacterial activity of silver nanoparticle (AgNP) confined mesoporous structured bioactive powder against Enterococcus faecalis infecting root canal systems Antibacterial activity of silver nanoparticle (AgNP) confined mesoporous structured bioactive powder against Enterococcus faecalis infecting root canal systems |
26 | Re-crystallization of bioactive glass mixed with various hardening agents Re-crystallization of bioactive glass mixed with various hardening agents |
27 | Re-crystallization of silica-based calcium phosphate glass prepared by sol-gel technique Re-crystallization of silica-based calcium phosphate glass prepared by sol-gel technique |
28 | The Effect of Ag Dopants on the Bioactivity and Antibacterial Properties of One-Step Synthesized Ag-Containing Mesoporous Bioactive Glasses The Effect of Ag Dopants on the Bioactivity and Antibacterial Properties of One-Step Synthesized Ag-Containing Mesoporous Bioactive Glasses |
29 | Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis |
30 | Universal fluorescent tri-probe ligation equipped with capillary electrophoresis for targeting SMN1 and SMN2 genes in diagnosis of spinal muscular atrophy Universal fluorescent tri-probe ligation equipped with capillary electrophoresis for targeting SMN1 and SMN2 genes in diagnosis of spinal muscular atrophy |
31 | Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers |
32 | Thermal cycling effects on adhesion of resin¡Vbovine enamel junction among different composite resins Thermal cycling effects on adhesion of resin¡Vbovine enamel junction among different composite resins |
33 | Interaction of bone progenitor cells with silica-based calcium phosphate glass powders prepared by sol¡Vgel template-free and template-structured processes Interaction of bone progenitor cells with silica-based calcium phosphate glass powders prepared by sol¡Vgel template-free and template-structured processes |
34 | Evaluation of gentamicin encapsulated hierarchically meso-macroporous silica-based calcium phosphates glass powders Evaluation of gentamicin encapsulated hierarchically meso-macroporous silica-based calcium phosphates glass powders |
35 | Effects of bioglass powders with and without mesoporous structures on fibroblast and osteoblast responses Effects of bioglass powders with and without mesoporous structures on fibroblast and osteoblast responses |
36 | ¤ò²ÓºÞ¹qªaªk¶EÂ_¦å¤Í¯f²Ä¤K¾®¦å¦]¤l¤ºÅã¤l22¤ÏÂध°ò¦]¤ÀªR Genotyping of intron 22 inversion of factor VIII gene for diagnosis of hemophilia A by inverse-shifting polymerase chain reaction and capillary electrophoresis |
37 | Effect of surfactant concentration on Characteristics of mesoporous bioactive glass prepared by the evaporation induced self-assembly process Effect of surfactant concentration on Characteristics of mesoporous bioactive glass prepared by the evaporation induced self-assembly process |
38 | Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion |
39 | Phosphorus Effects of Mesoporous Bioactive Glass on Occlude Exposed Dentin Phosphorus Effects of Mesoporous Bioactive Glass on Occlude Exposed Dentin |
40 | Mineralization and Osteoblast Cells Response of Nanograde Pearl Powders Mineralization and Osteoblast Cells Response of Nanograde Pearl Powders |
41 | Properties of osteoconductive biomaterials: Calcium phosphate cement with different ratios of platelet-rich plasma as identifiers Properties of osteoconductive biomaterials: Calcium phosphate cement with different ratios of platelet-rich plasma as identifiers |
42 | Calcium phosphate bone cement with 10 wt% platelet-rich plasma in vitro and in vivo Calcium phosphate bone cement with 10 wt% platelet-rich plasma in vitro and in vivo |
43 | In vitro ostro-inductive characterization of nanograde pearl powders In vitro ostro-inductive characterization of nanograde pearl powders |
44 | Thermal Behavior and Transformation Kinetics of Titanium Dioxide Nanocrystallites Prepared by Coupling Agents Thermal Behavior and Transformation Kinetics of Titanium Dioxide Nanocrystallites Prepared by Coupling Agents |
45 | Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process |
46 | Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process |
47 | Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds |
48 | ¤¶¤Õ¤G®ñ¤ÆÜg©`¦Ì´¹·L²É§lªþºû¥L©R E ¤§¬ã¨s Adsorption of vitamin E on mesoporous titania nanocrystals |
49 | Single nucleotide polymorphism detection in the hMSH2 gene using conformation-sensitive CE Single nucleotide polymorphism detection in the hMSH2 gene using conformation-sensitive CE |
50 | Crystallization kinetics and growth mechanism of 8mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol¡Vgel process Crystallization kinetics and growth mechanism of 8mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol¡Vgel process |
51 | Characterization on the electrophoretic deposition of the 8mol% yttria-stabilized zirconia nanocrystallites prepared by a sol¡Vgel process Characterization on the electrophoretic deposition of the 8mol% yttria-stabilized zirconia nanocrystallites prepared by a sol¡Vgel process |
52 | Structural and morphological studies on poly(3-hydroxybutyrate acid) (PHB)/chitosan drug releasing microspheres prepared by both single and double emulsion processes Structural and morphological studies on poly(3-hydroxybutyrate acid) (PHB)/chitosan drug releasing microspheres prepared by both single and double emulsion processes |
53 | Low temperature synthesis of nanocrystalline lanthanum monoaluminate powders by chemical coprecipitation Low temperature synthesis of nanocrystalline lanthanum monoaluminate powders by chemical coprecipitation |
54 | Thermal-decomposition and crystallization behaviour of coupling agents for silver paste application Thermal-decomposition and crystallization behaviour of coupling agents for silver paste application |
55 | Stability of colloidal silicon nitride suspension with poly-electrolyte Stability of colloidal silicon nitride suspension with poly-electrolyte |
56 | Colloidal processing of titanium nitride with poly-(methacrylic acid) polyelectrolyte Colloidal processing of titanium nitride with poly-(methacrylic acid) polyelectrolyte |
57 | Electrokinetic and Rheological Properties of Aqueous TiN Suspensions with Ammonium Salt of Poly(methacrylic acid) Electrokinetic and Rheological Properties of Aqueous TiN Suspensions with Ammonium Salt of Poly(methacrylic acid) |
58 | Stabilization of aqueous Si3N4 suspensions with ammonium salt of poly(acrylic acid) at various pH Stabilization of aqueous Si3N4 suspensions with ammonium salt of poly(acrylic acid) at various pH |
Project
NO |
YEAR ¡X Source ¡X No ¡X Type
Project Name
|
Duration |
---|---|---|
1 |
113 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSTC113-2221-E-037-002 ¡X 1 Ó¤H«¬
¶}µo¸üEbselen¤§§t»È¤¶¤Õ¥Íª«¬¡©Ê¬Á¼þÀ³¥Î©ó¨ó¦PªvÀø¥Ö½§»P³n²Õ´·P¬V( )
|
2024/08/01 ~ 2025/07/31 |
2 |
112 ¡X M °ªÂå(ºØ¤lpµe) ¡X KMU-M113003 ¡X
¥Ñ¦X¦¨¨ìÀ³¥Î¡G¶}µo»È-¨Ì¥¬Ö´¦@¸ü¤¶¤Õ¥Íª«¬¡©Ê¬Á¼þªvÀø¶Ë¤f·P¬V( )
|
2024/01/01 ~ 2024/12/31 |
3 |
112 ¡X X °ª©_¦X§@pµe ¡X 113CM-KMU-08 ¡X
Ag/MBG-Sr¹ï°©¬ì·P¬V¦h«§ÜÃĵߤ§§íµß¤Î«P°©¥Íªø¬¡©Êµû¦ô( )
|
2024/08/01 ~ 2025/07/31 |
4 |
111 ¡X KK °ª¬ì¤j°ªÂå²£¾Ç¦X§@¸É§U ¡X ¡X
²§½èª÷ÄÝ®ñ¤Æª«©`¦Ì§÷®Æ¤§§Üµß»P·P´úÀ³¥Î(¤G)( )
|
2022/11/01 ~ 2023/10/31 |
5 |
111 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST111-2221-E-037-006 ¡X 1 Ó¤H«¬
¶}µo¦h¥\¯àªvÀøª÷ÄÝÂ÷¤l¥iÄÀ©Ê§÷®ÆÀ³¥Î©ó¦A¥Í©Ê®ÚºÞªvÀø( )
|
2022/08/01 ~ 2023/07/31 |
6 |
111 ¡X X °ª©_¦X§@pµe ¡X 112CM-KMU-04 ¡X
§tÖ´¥Íª«¬¡©Ê¬Á¼þ¹ï°©Å誢§ÜÃÄ©ÊP¯fµß·P¬V¤§¬ã¨s( )
|
2023/08/01 ~ 2024/07/31 |
7 |
110 ¡X KK °ª¬ì¤j°ªÂå²£¾Ç¦X§@¸É§U ¡X ¡X
²§½èª÷ÄÝ®ñ¤Æª«©`¦Ì§÷®Æ¤§§Üµß»P·P´úÀ³¥Î( )
|
2021/11/05 ~ 2022/11/04 |
8 |
110 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST110-2221-E-037-004 ¡X 1 Ó¤H«¬
«Øºc¸ü»Éª¿°ò¥Íª«¬¡©Ê¬Á¼þ¹ï¦h«§ÜÃĵߤ§§íµß§Î»ª( )
|
2021/08/01 ~ 2022/07/31 |
9 |
110 ¡X X °ª©_¦X§@pµe ¡X 111CM-KMU-02 ¡X
§t»Èî֥ͪ«¬¡©Ê¬Á¼þÀ³¥Î©ó¹w¨¾¤H¤uÆbÃö¸`·P¬V( )
|
2022/08/01 ~ 2023/07/31 |
10 |
110 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST111-2813-C-037-013-E ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
111¦~«×¤j±M¾Ç¥Í¬ã¨spµe-¾G§B¬R(»ùÛ2)( )
|
2022/07/01 ~ 2023/02/28 |
11 |
109 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST107-2221-E-037-001-MY3 ¡X 1 Ó¤H«¬
ºñ¦â¤¶½è¬¡¤Æ¦h¯Å¤Õ³³²¡¯»Åé¹ï¦h«§ÜÃÄ©ÊP¯fµß®è¤§§íµß®Ä¯à¬ã¨s(3/3)( )
|
2020/08/01 ~ 2021/07/31 |
12 |
109 ¡X X °ª©_¦X§@pµe ¡X 110CM-KMU-02 ¡X
¤¶½è¬¡¤Æ¥Íª«¬¡©Ê¬Á¼þ¯»Åé¹ï¦h«§ÜÃĵߪº§íµß®Ä¯à¬ã¨s( )
|
2021/08/01 ~ 2022/07/31 |
13 |
109 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST110-2813-C-037-208-E ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
110¦~«×¤j±M¾Ç¥Í¬ã¨spµe-ªL«º§±(»ùÛ3)( )
|
2021/07/01 ~ 2022/02/28 |
14 |
108 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST107-2221-E-037-001-MY3 ¡X 1 Ó¤H«¬
ºñ¦â¤¶½è¬¡¤Æ¦h¯Å¤Õ³³²¡¯»Åé¹ï¦h«§ÜÃÄ©ÊP¯fµß®è¤§§íµß®Ä¯à¬ã¨s(2/3)( )
|
2019/08/01 ~ 2021/07/31 |
15 |
108 ¡X X °ª©_¦X§@pµe ¡X 109CM-KMU-05 ¡X
»È³J¥Õ»P§Ü¥Í¯À¹ï¦h«§ÜÃĵߤ§¨ó¦P§íµß®Ä¯à¬ã¨s( )
|
2020/05/01 ~ 2021/04/30 |
16 |
107 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST107-2221-E-037-001-MY3 ¡X 1 Ó¤H«¬
ºñ¦â¤¶½è¬¡¤Æ¦h¯Å¤Õ³³²¡¯»Åé¹ï¦h«§ÜÃÄ©ÊP¯fµß®è¤§§íµß®Ä¯à¬ã¨s(1/3)( )
|
2018/08/01 ~ 2021/07/31 |
17 |
107 ¡X Y °ªÂå-¹ü°ò¦X§@pµe ¡X 108-CCH-KMU-007 ¡X 1 Ó¤H«¬
§Üµß«¬°©²¾´Ó§÷®Æ¤§¨ó¦P§íµß®Ä¯à¬ã¨s( )
|
2019/01/01 ~ 2019/12/31 |
18 |
107 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST108-2813-C-037-002-E ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
108¦~«×¤j±M¾Ç¥Í¬ã¨spµe-´¿©É®x(»ùÛ3)( )
|
2019/07/01 ~ 2020/02/29 |
19 |
106 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST104-2221-E-037-003-MY3 ¡X 1 Ó¤H«¬
¸ü»È¤¶¤Õ¥ÍÂå¬Á¼þ¹ïÁT¸z²yµß·P¬V®ÚºÞ¤§§Üµß¬ã¨s(3/3)( )
|
2017/08/01 ~ 2018/07/31 |
20 |
106 ¡X X °ª©_¦X§@pµe ¡X 107CM-KMU-07 ¡X
½Æ¦X«¬§íµß§÷®Æ¹ï¦h«§ÜÃĩʪv¯fµß¤§§íµß®Ä¯à¬ã¨s( )
|
2018/05/01 ~ 2019/04/30 |
21 |
106 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST107-2813-C-037-005-E ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
107¦~«×¤j±M¾Ç¥Í¬ã¨spµe-ÁÂÄRi(»ùÛ3)( )
|
2018/07/01 ~ 2019/02/28 |
22 |
105 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST104-2221-E-037-003-MY3 ¡X 1 Ó¤H«¬
¸ü»È¤¶¤Õ¥ÍÂå¬Á¼þ¹ïÁT¸z²yµß·P¬V®ÚºÞ¤§§Üµß¬ã¨s(2/3)( )
|
2016/08/01 ~ 2018/07/31 |
23 |
105 ¡X X °ª©_¦X§@pµe ¡X 106CM-KMU-07 ¡X
¥iÀ³¥Î©ó¤H¤uÆbÃö¸`·P¬V¤§¨ó¦P§Üµß¥ÍÂå§÷®Æ¶}µo( )
|
2017/05/01 ~ 2018/04/30 |
24 |
105 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST106-2813-C-037-002-E ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
106¦~«×¤j±M¾Ç¥Í¬ã¨spµe-³¢²QµØ(Âå¤Æ2)( )
|
2017/07/01 ~ 2018/02/28 |
25 |
104 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST104-2221-E-037-003-MY3 ¡X 1 Ó¤H«¬
¸ü»È¤¶¤Õ¥ÍÂå¬Á¼þ¹ïÁT¸z²yµß·P¬V®ÚºÞ¤§§Üµß¬ã¨s(1/3)( )
|
2015/08/01 ~ 2018/07/31 |
26 |
104 ¡X OX ¨ä¥L³æ¦ì(«D¬ã¨s) ¡X 104-064-2 ¡X
105¦~«×¤Æ§©«~·~쪫®Æ¯Ó¥Î³q±`¤ô·Ç½Õ¬d¬ãq§@·~±ÄÁÊ®×( )
|
2016/10/05 ~ 2016/12/31 |
27 |
104 ¡X X °ª©_¦X§@pµe ¡X 105CM-KMU-10 ¡X
¥D°Ê§íµß¦h¯Å¤Õ§÷®Æ¹ï°©Å誢§ÜÃÄ©ÊP¯fµß·P¬V¤§¬ã¨s( )
|
2016/05/01 ~ 2017/04/30 |
28 |
104 ¡X Y °ªÂå-¹ü°ò¦X§@pµe ¡X 105-CCH-KMU-006 ¡X 1 Ó¤H«¬
·s«¬ºA¥ÍÂå§÷®Æ¹ï§ÜÃÄ«¬ª÷¶À¦â¸²µå²yµß·P¬V¤§§Üµß¬ã¨s( )
|
2016/01/01 ~ 2016/12/31 |
29 |
104 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X MOST105-2815-C-037-017-E ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
105¦~«×¤j±M¾Ç¥Í¬ã¨spµe-¬_§Ó¿Ä(»ùÛ3)( )
|
2016/07/01 ~ 2017/02/28 |
30 |
103 ¡X NK °ªÂå-¤¤¤s¦X§@pµe ¡X NSYSUKMU103-P011 ¡X 1 Ó¤H«¬
¥D°Ê§íµß«¬¼È®É©Ê¼Å®ÆÀ³¥Î©ó®ÚºÞ¤§§íµß¤Î«Ê¶ñ¬ã¨s(Active antibiotic filling materials used in root-canal system for Endodontic Therapy)
|
2014/01/01 ~ 2014/12/31 |
31 |
103 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST103-2221-E-037-002 ¡X 1 Ó¤H«¬
¸ü»È¤¶¤Õ¥ÍÂå§÷®Æ¤§§íµß§Î»ª¤Î¤ú¥»½è¤pºÞ«Ê¶ñ¬ã¨s( )
|
2014/08/01 ~ 2015/07/31 |
32 |
102 ¡X X °ª©_¦X§@pµe ¡X 103CM-KMU-07 ¡X
SI-CA-P-AG¤¶¤Õ¥ÍÂå¬Á¼þ¤§ÄÀ©ñ¼Ò¦¡»P§íµß¬Û¨Ì©Ê¬ã¨s( )
|
2014/05/01 ~ 2015/04/30 |
33 |
102 ¡X NK °ªÂå-¤¤¤s¦X§@pµe ¡X NSYSUKMU102-P023 ¡X 1 Ó¤H«¬
À¹»È¤¶¤Õ¥ÍÂå§÷®Æ¤§§íµß§Î»ª¬ã¨s(Morphological analysis of the antimicrobial action of Silver Encapsulated Mesoporous Bioactive Materials)
|
2013/01/01 ~ 2013/12/31 |
34 |
101 ¡X M °ªÂå(ºØ¤lpµe) ¡X KMU-M102006 ¡X
¤ú¬ì®ÚºÞªvÀø¥Î¼È®É©Ê¼Å®Æ---§t§Üµß»È¤§¤¶¤Õ¥ÍÂå¬Á¼þ¬ãµo( )
|
2012/12/01 ~ 2013/12/31 |
35 |
101 ¡X X °ª©_¦X§@pµe ¡X 102CM-KMU-13 ¡X
»]µo»¤¾É¦Û²Õ¸Ëªk¦X¦¨¸ü»È¤¶¤Õ¥ÍÂå¬Á¼þ¤§§íµß§Î»ª¬ã¨s( )
|
2013/05/01 ~ 2014/04/30 |
36 |
100 ¡X M °ªÂå(ºØ¤lpµe) ¡X KMU-M110008 ¡X
¤¶¤Õ¥ÍÂå¬Á¼þ»s¾¯ªvÀø¤ú¥»½è¹L±Ó¯g¤§¬ãµo( )
|
2011/12/15 ~ 2012/12/31 |
37 |
099 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSC99-2221-E-037-003 ¡X 1 Ó¤H«¬
¤¶¤Õ¥Íª«¬¡©Ê¬Á¼þ§@¬°§Ü¥Í¯À¤§ÄÀ©ñ¸üÅé¬ã¨s( )
|
2010/08/01 ~ 2012/07/31 |
38 |
098 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSC98-2221-E-037-004 ¡X 1 Ó¤H«¬
SiO2-CaO-P2O5¤¶¤Õ¥Íª«¬¡©Ê¬Á¼þ»s³Æ¤Î¥Íª«¬¡©Êµû¦ô( )
|
2009/08/01 ~ 2010/07/31 |
39 |
098 ¡X X °ª©_¦X§@pµe ¡X 99CM-KMU-11 ¡X
¤¶¤Õ¥Íª«¬¡©Ê¬Á¼þ§@¬°§Ü¥Í¯À¤§ÄÀ©ñ¸üÅé¬ã¨s( )
|
2010/05/01 ~ 2011/04/30 |
40 |
096 ¡X Y °ªÂå-¹ü°ò¦X§@pµe ¡X 97-CCH-KMU-007 ¡X 1 Ó¤H«¬
¤¶¤Õ¥Íª«¬¡©Ê¬Á¼þ§@¬°°©²Õ´¦A¥Í§÷®Æ¤§¬ã»s¤Î¥Íª«¾AÀ³©Êµû¦ô( )
|
2008/01/01 ~ 2008/12/31 |
41 |
096 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X 97-2815-C-037-019-E ¡X 8 ¤j±M¾Ç¥Í¬ã¨spµe
97¦~«×¤j±M¾Ç¥Í°Ñ»P±MÃD¬ã¨spµe--ªôµY´¹( )
|
2008/07/01 ~ 2009/02/28 |
42 |
093 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSC¡@94-2216-E-037-002- ¡X 1 Ó¤H«¬
©`¦Ìµ²ºc×¹¢§C·Å°ª¾É¹q»È½¦À³¥Î©ó¥i¼¸¦¡°ò§÷¬ã¨s( )
|
2005/01/01 ~ 2005/07/31 |
43 |
093 ¡X Q ·s¸u±Ð®vpµe(®Õ¤º) ¡X Q094004(³¡¤À¸É§U) ¡X 1 Ó¤H«¬
©`¦Ìµ²ºc×¹¢§C·Å°ª¾É¹q»È½¦À³¥Î©ó¥i¼¸¦¡°ò§÷¬ã¨s(°ê¬ì·|³q¹L253900¤¸)( )
|
2005/03/01 ~ 2005/07/01 |
Patent
NO | Patent Name | Country | Certified Date | Patent No |
---|---|---|---|---|
1 | ¨ã¦³¥D°Ê½wÄÀ©ñ®ÄÀ³¤§³³²¡§÷®Æ¡A¨ä»s³y¤èªk¤Î¥]§t¦¹³³²¡§÷®Æ¤§¨t²Î | ¤¤µØ¥Á°ê | 2019/05/21 | I659939 |
2 | ¨ã¦³¥D°Ê½wÄÀ©ñ®ÄÀ³¤§³³²¡§÷®Æ¡A¨ä»s³y¤èªk¤Î¥]§t¦¹³³²¡§÷®Æ¤§¨t²Î | ¬ü°ê | 2020/02/04 | 10,548,324 |
3 | ¨ã¦³¥D°Ê½wÄÀ©ñ®ÄÀ³ªº³³²¡§÷®Æ¡A¨ä»s³y¤èªk¤Î¥]§t¦¹³³²¡§÷®Æªº¨t²Î | ¤¤°ê | 2021/04/02 | 4334322 |
4 | ¨ã¦³¨ó¦P§@¥Î¤§¥ÍÂå§÷®Æ¤Î¨ä»s³y¤èªk | ¤¤µØ¥Á°ê | 2020/03/11 | I687229 |
5 | §Üµß½¦Åé¡B¨ä»s³y¤èªk¤Î¥]§t¦¹§Üµß½¦Å餧¨t²Î | ¤¤µØ¥Á°ê | 2022/11/01 | I782199 |
6 | ¨ã¦³¥D°Ê½wÄÀ©ñ®ÄÀ³¤§³³²¡§÷®Æ¡A¨ä»s³y¤èªk¤Î¥]§t¦¹³³²¡§÷®Æ¤§¨t²Î | ¬ü°ê | 2021/12/28 | 11,206,833 |
7 | §Üµß½¦Åé¤Î¨ä»s³y¤èªk | ¤é¥» | 2021/12/03 | 6987407 |