Education
School ¡X Major ¡X Degree | Duration |
---|---|
°ª¶¯Âå¾Ç¤j¾Ç ¡X ÃľǨt(²¦) ¡X ³Õ¤h Doctorate, , |
2005/08 ¡X 2009/06 |
°ª¶¯Âå¾Ç¤j¾Ç ¡X ÃľǬã¨s©Ò(²¦) ¡X ºÓ¤h Master, , |
2003/08 ¡X 2005/07 |
°ª¶¯Âå¾Ç¤j¾Ç ¡X ÃľǨt(²¦) ¡X ¾Ç¤h Bachelor, , |
1999/08 ¡X 2003/07 |
Intramural Experience
Office/Department/Institute | Position | Duration |
---|---|---|
Ãľǰ|¬ãµo²Õ Research and Developmen | Head | 2024/08/01 ¡X 2025/07/31 |
ÃľǨt School of Pharmacy | Associate Professor | 2020/08/01 ¡X |
ÃľǨt School of Pharmacy | Assistant Professor | 2017/02/01 ¡X 2020/07/31 |
Extramural Experience
Discipline
NO | Discipline | Expertise |
---|---|---|
1 | ¥Íª«Âå¹AÃþ Biology, Medicine and Agriculture | ÃľǤΤ¤ÂåÃÄ Pharmacy and Chinese Medicine and Pharmacy |
2 | ¦ÛµM¬ì¾ÇÃþ Natural Sciences | ¤Æ¾Ç Chemistry |
Research & Technology Platform Open to the Outside
Interested Area(s)for Interdisciplinary Research
°ò¦]¤ÀªR¡B¤ÀªR¤Æ¾Ç¤ò²ÓºÞ¹qªaªk¶}µo¡B°ò¦]ÀË´ú¤èªk¶}µo¡B¯S®í¤Þ¤l¤Î±´°w³]p¤ÎÀ³¥Î¡B©`¦Ì²É¤l¦X¦¨¤ÎÀ³¥Î
Capillary electrophoresis in pharmacokinetic and pharmacogenetic analysis. Synthesis and application of nanoparticles. Biosensors in pharmacokinetic and pharmacogenetic analysis.
Area(s) of Expertise & Research
»ö¾¹¤ÀªR¡BÃĪ«¤ÀªR¡B°ò¦]¤ÀªR¡B¤ÀªR¤Æ¾Ç¤ò²ÓºÞ¹qªaªk¶}µo¡B°ò¦]ÀË´ú¤èªk¶}µo¡B¯S®í¤Þ¤l¤Î±´°w³]p¤ÎÀ³¥Î¡B©`¦Ì²É¤l¦X¦¨¤ÎÀ³¥Î
Development of capillary electrophoresis methods Development of gene detection techniques Design and application of specific primer and probe Synthesis and application of nanoparticles
Publication
NO | Publication |
---|---|
1 | Fast genotyping of K-RAS codons 12 and 13 based on streptavidin magnetic microbeads equipped with biotin-coupled single base-pair mismatch PCR (SM-PCR) Fast genotyping of K-RAS codons 12 and 13 based on streptavidin magnetic microbeads equipped with biotin-coupled single base-pair mismatch PCR (SM-PCR) |
2 | One Single Tube Reaction of Aptasensor-Based Magnetic Sensing System for Selective Fluorescent Detection of VEGF in Plasma One Single Tube Reaction of Aptasensor-Based Magnetic Sensing System for Selective Fluorescent Detection of VEGF in Plasma |
3 | Dual‑probe ligation without PCR for fluorescent sandwich assay of EGFR nucleotide variants in magnetic gene capture platform Dual‑probe ligation without PCR for fluorescent sandwich assay of EGFR nucleotide variants in magnetic gene capture platform |
4 | Identifiable universal fluorescent multiplex PCR equipped with capillary electrophoresis for genotyping of exons 1 to 5 in human red and green pigment genes Identifiable universal fluorescent multiplex PCR equipped with capillary electrophoresis for genotyping of exons 1 to 5 in human red and green pigment genes |
5 | ¤T¨B¤ò²ÓºÞ¹qªa½u¤W¿@ÁY§Þ³NÀ³¥Î©ó´ú©w¤HÅé¦å¼ß¤¤¤§dabigatran©M¨ä¥NÁª« A three-step stacking capillary electrophoresis of field-amplified sample injection, sweeping, and micellar collapse for determination of dabigatran and its active metabolite in human plasma |
6 | ¤T¨BÅ|¥[¤ò²ÓºÞ¹qªaªk·f°t¤Æ¾Çp¶q¹êÅç³]pÀ³¥Î©ó¤ÀªR±²µÒ²£«~¤¤¤ºØ¯S¦³¤§¨ÈµvÓi A chemometric experimental design with three-step stacking capillary electrophoresis for analysis of five tobacco-specific nitrosamines in cigarette products |
7 | ¶}µoºc¶H¶}Ãö»¤¾ÉÂø¦Xªº¿Ã¥ú¾AÅé·P´ú¾¹À³¥Î©óÀË´ú£]-¾ý¯»¼Ë³J¥Õ¹è»EÅé Fluorescent aptasensor based on conformational switch-induced hybridization for facile detection of £]‑amyloid oligomers |
8 | Copper nanoclusters on specific-primer PCR fragments with magnetic capture for the label-free fluorescent sensing of the T315I single nucleotide variant in the BCR¡VABL1 gene Copper nanoclusters on specific-primer PCR fragments with magnetic capture for the label-free fluorescent sensing of the T315I single nucleotide variant in the BCR¡VABL1 gene |
9 | éwªºµo¥ú»E¡]²m¤þÓiÆQ»ÄÆQ¡^-¼ÒªO»É¯Ç¦ÌÄ{ÁLÀ³¥Î©ó¿ï¾Ü©Ê·P´ú¦a¤¤®ü«¬³h¦å¦å¼ß¤¤ªºDeferasirox Stable Luminescent Poly(Allylaminehydrochloride)-Templated Copper Nanoclusters for Selectively Turn-Off Sensing of Deferasirox in beta-Thalassemia Plasma |
10 | §Q¥ÎSDS»P¿Ë¤ô©Ê»E¦Xª«©óMEKC¤ÀÂ÷¼Ò¦¡¤U¤ÀÂ÷°ª©M§C¤À¤l¶q¤§³z©ú½è»Ä The matrix of SDS integrated with linear hydrophilic polymer for resolution of high- and low-molecular weight hyaluronic acids in MEKC |
11 | §Q¥Î»ÉÂ÷¤l»¤¾É¦h¤ÚÓi¦@³mºÒÂIªºÖ`·À©Mµo¥ú«ì´_À³¥Î©óÀË´ú¦å¼ß¤¤ªºDeferasirox Cu2+-induced quenching and recovery of the luminescence of dopamine-conjugated carbon dots for sensing deferasirox in plasma |
12 | §Q¥Î³æÃì¤À¤l¤ÏÂà±´°w-ºuÀôÂX¼W·f°t¿Ã¥ú»É¯Ç¦Ì¹ÎÁLÀ³¥Î©óÀË´úSMN°ò¦]ªº³æ®Ö苷»ÄÅܲ§Åé¥H¶EÂ_¯áÅè¦Ù¦×µäÁY¯g Molecular inversion probe-rolling circle amplification with single-strand poly-T luminescent copper nanoclusters for fluorescent detection of single-nucleotide variant of SMN gene in diagnosis of spinal muscular atrophy |
13 | Microwave assisted synthesis of negative-charge carbon dots with potential antibacterial activity against multi-drug resistant bacteria Microwave assisted synthesis of negative-charge carbon dots with potential antibacterial activity against multi-drug resistant bacteria |
14 | À³¥Î©`¦Ì§÷®Æ©M¥ú¾Ç¶Ç·P¾¹©ó«DªkÃĪ«¤§¤ÀªR Nanomaterial-based adsorbents and optical sensors for illicit drug analysis |
15 | Antibacterial Activity of BSA-Capped Gold Nanoclusters against Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Intermediate Staphylococcus aureus (VISA) Antibacterial Activity of BSA-Capped Gold Nanoclusters against Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Intermediate Staphylococcus aureus (VISA) |
16 | §Q¥Î¤ò²ÓºÞ¹qªaªk¤ÀªR¹B°Ê¯«¸gì¦s¬¡°ò¦]©ó ¶EÂ_¯áÅè¦Ù¦×µäÁY¯g Capillary Gel Electrophoresis for Analysis of Survival Motor Neuron Gene in Diagnosis of Spinal Muscular Atrophy |
17 | §Q¥Î°ò¦]®·®»»P¨î酶»Ã¯ÀÄÀ©ñÀ³¥Î©óª½±µ¿Ã¥ú¤ÀªR°ò¦]Åܲ§©ó¶EÂ_¯áÅè¦Ù¦×µäÁY¯g Specific Gene Capture Combined with Restriction-Fragment Release for Directly Fluorescent Genotyping of Single-Nucleotide Polymorphisms in Diagnosing Spinal Muscular Atrophy |
18 | Dialkyl anionic surfactant in field-amplified sample injection andsweeping-micellar electrokinetic chromatography for determinationof eight leanness-promoting -agonists in animal feeds Dialkyl anionic surfactant in field-amplified sample injection andsweeping-micellar electrokinetic chromatography for determinationof eight leanness-promoting -agonists in animal feeds |
19 | Molecular inversion probes equipped with discontinuous rolling cycle amplification for targeting nucleotide variants: Determining SMN1 and SMN2 genes in diagnosis of spinal muscular atrophy Molecular inversion probes equipped with discontinuous rolling cycle amplification for targeting nucleotide variants: Determining SMN1 and SMN2 genes in diagnosis of spinal muscular atrophy |
20 | DNAµ²¦X¤§ª÷©`¦Ì²É¤lªº¥Íª«Âå¾ÇÀ³¥Î Biomedical Applications of DNA-Conjugated Gold Nanoparticles |
21 | «D¼Ð¥Ü¿Ã¥ú©`¦ÌÂO¹ï§ùÄɤó¦Ù¦×µäÁY¯g¤§°ò¦]¶EÂ_ Label-free fluorescent copper nanoclusters for genotyping of deletion and duplication of Duchenne muscular dystrophy |
22 | Direct assay of uroporphyrin and coproporphyrin in human urine by reverse-mode field amplified sample injection-sweeping and micellar electrokinetic chromatography Direct assay of uroporphyrin and coproporphyrin in human urine by reverse-mode field amplified sample injection-sweeping and micellar electrokinetic chromatography |
23 | Universal fluorescent tri-probe ligation equipped with capillary electrophoresis for targeting SMN1 and SMN2 genes in diagnosis of spinal muscular atrophy Universal fluorescent tri-probe ligation equipped with capillary electrophoresis for targeting SMN1 and SMN2 genes in diagnosis of spinal muscular atrophy |
24 | A ¡§turn on/off¡¨ scorpion biosensor targeting point mutation of SMN gene for diagnosis of spinal muscular atrophy A ¡§turn on/off¡¨ scorpion biosensor targeting point mutation of SMN gene for diagnosis of spinal muscular atrophy |
25 | ¤Ï¦V»E¦X酶ÃìÂê¤ÏÀ³¤ò²ÓºÞ¹qªaªk¹ï¦å¤Í¯f intron 22 inversion Type 1 ¤Î 2¤§¤ÀªR¬ã¨s Separation of intron 22 inversion Type 1 and 2 of hemophilia A by modified inverse-shifting polymerase chain reaction and capillary gel electrophoresis |
26 | ¤ò²ÓºÞ¹qªaªk¶EÂ_¦å¤Í¯f²Ä¤K¾®¦å¦]¤l¤ºÅã¤l22¤ÏÂध°ò¦]¤ÀªR Genotyping of intron 22 inversion of factor VIII gene for diagnosis of hemophilia A by inverse-shifting polymerase chain reaction and capillary electrophoresis |
27 | ¤ò²ÓºÞ¹qªaªk¹ï§ùÄɤó¦Ù¦×µäÁY¯g¤§¥~Åã¤l1~20¤§°ò¦]¤ÀªR Genotyping of exons 1 to 20 in Duchenne muscular dystrophy by universal multiplex PCR and short-end capillary electrophoresis |
28 | §Q¥Î¤jÅé¿nÀË«~°ï¿n¤ò²ÓºÞ¹qªaªk¤ÀªRcarbamazepine¤Î¨ä¤ºØ¥NÁª« Analysis of carbamazepine and its five metabolites in serum by large volume sample stacking-sweeping capillary electrophoresis |
29 | ¤jÅé¿n°ï¿n±½¶°¤ò²ÓºÞ¹qªa§Þ³N¤Î¹êÅç¤ÀªRµ¦²¤¹ï¤QºØÀÝ¥ÎÃĪ«¤§¤ÀªR¬ã¨s Analysis of ten abused drugs in urine by large volume sample stacking-sweeping capillary electrophoresis with an experimental design strategy |
30 | ¶§Â÷¤l¤j¶qª`®g¤Î±½¶°¦¡MEKC¤ò²ÓºÞ¹qªaªk¹ï¦×«~¤¤½G¦×ºëractopamine¤§©w¶q¤ÀªR¬ã¨s Chemometric optimization of cation-selective exhaustive injection sweeping MEKC for quantification of ractopamine in porcine meat |
31 | §Q¥Î·L¨Å¤Æ¹q°Ê¼hªRªk¤ÀªR¶¼®Æ¤¤phthalates¤§§t¶q Microemulsion electrokinetic chromatography for analysis of phthalates in soft drinks |
32 | ¤ò²ÓºÞ¹qªaªk¹ï¤HÅé¦å¼ß¤¤(¡Ó)-threo-methylphenidate¤§¹ï´x¤ÀªR¬ã¨s Enantioseparation of (¡Ó)-threo-methylphenidate in human plasma by cyclodextrin-modified sample stacking capillary electrophoresis |
33 | ¥H¤Æ¾Ç²Îp³]p¶i¦æ¤jÅé¿nÀË«~°ï¿n¤ò²ÓºÞ¹qªaªk¹ï¤ÆùÛ«~¤¤±`¥Î¨¾»G¾¯¤§¤ÀªR¬ã¨s Large volume sample stacking with electroosmotic flow and sweeping in capillary electrophoresis for determination of common preservatives in cosmetic products by chemometric experimental design |
34 | ªÍÀùÃĪ«°ò¦]Åé¾Ç¤¤§Q¥Î¤ò²ÓºÞ¹qªaªk°w¹ïªí¥Ö¥Íªø¦]¤l±µ¨ü¾¹¤§°ò¦]¤ÀªR¬ã¨s Capillary electrophoretic genotyping of epidermal growth factor receptor for pharmacogenomic assay of |
35 | ³Ð·s«¬«ÂЩʤjÅé¿nÀË«~ª`¤J¤Î±½´y¦¡·LM¹q°Ê¼hªRªk¹ï§¿²G¤¤¨k©Ê²üº¸»X¹B°Ê¸TÃĤ§¤ÀªR¬ã¨s A novel stacking method of repetitive large volume sample injection and sweeping MEKC for determination of androgenic steroids in urine |
36 | §Q¥Î¦P®ÉÀË´úSMN°ò¦]¾¯¶q»PSMNÂø¥æ°ò¦]§P§OSMN°ò¦]ªº¬Û¦V©ÊÂà´«¦s¦b©ó¤@µØ¤H±Ú¸s Identification of bidirectional gene conversion between SMN1 and SMN2 by simultaneous analysis of SMN dosage and hybrid genes in a Chinese population |
37 | ¿ï¾Ü©Ê¤j¶q¶§Â÷¤l¨ú¼Ë¤Î±½´y¦¡·LM¹q°Ê¼hªRªk¤ÀªR®ü¬¥¦]ÃÄÅ}ªÌ¨Ï¥Î¨Ï¥Î¬ü¨F¦P«á¤§¦å¤¤¿@«×´ú©w Cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography for the analysis of methadone and its metabolites in serum of heroin addicts |
38 | §Q¥Î³q¥Î¿Ã¥ú¤Þ¤l»E¦X»Ã¯ÀÃìÂê¤ÏÀ³¤Î¤ò²ÓºÞ¹qªaªk¤ÀªR¯áÅè¦Ù¦×µäÁY¯g¤§¦h°Ï°ò¦]¤ÀªR Multi-exon genotyping of SMN gene in spinal muscular atrophy by universal fluorescent PCR and capillary electrophoresis |
39 | §Q¥Î¤ò²ÓºÞ¹qªaªk¤ÀªR¯áÅè¦Ù¦×µäÁY¯g¤§SMN!/SMN2°ò¦]Âà´«¤ÀªR Universal fluorescent multiplex PCR and capillary electrophoresis for evaluation of gene conversion between SMN1/SMN2 in spinal muscular atrophy |
40 | ¥H³q¥Î¦h«»E¦X–¡¤Î¤ò²ÓºÞ¹qªaªk©w¶q¯áÅè¦Ù¦×µäÁY¯g¤§SMN1/SMN2°ò¦] Universal Multiplex PCR and Capillary Electrophoresis for Quantification of SMN1/SMN2 Genes in Spinal Muscular Atrophy |
41 | §Q¥Î¤ò²ÓºÞ¹qªa©w¶qSMN1©MSMN2¥Î©ó¶EÂ_¯áÅè¦Ù¦×µäÁY¯g Quantification of SMN1 and SMN2 genes by capillary electrophoresis for diagnosis of spinal muscular atrophy |
42 | ¥H·LM¹q°Ê¤ò²ÓºÞ¹qªaªk¦P®É´ú©w¤Æ§©«~¤¤ l-ascorbic acid, ascorbic acid-2-phosphate magnesium salt, and ascorbic acid-6-palmitate¤TºØ¦¨¤À Simultaneous determination of l-ascorbic acid, ascorbic acid-2-phosphate magnesium salt, and ascorbic acid-6-palmitate in commercial cosmetics by micellar electrokinetic capillary electrophoresis |
43 | §Q¥Î¤jÅé¿nÀË«~°ï¿n¤Î¹q·¥¤ÏÂध¤ò²ÓºÞ¹qªaªk¤ÀªRmercaptopurine¤Î¨ä¥NÁª« Determination of mercaptopurine and its four metabolites by large volume sample stacking with polarity switching in capillary electrophoresis |
Project
NO |
YEAR ¡X Source ¡X No ¡X Type
Project Name
|
Duration |
---|---|---|
1 |
113 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSTC113-2113-M-037-011 ¡X 1 Ó¤H«¬
¶}µo¤ò²ÓºÞ·L¬yÅé¨t²Î·f°t©`¦Ìªí±½Æ¦X§÷®ÆÀ³¥Î©ó§Ö³tÀË´úIrinotecan¤§ÃĪ«¦å¤¤¿@«×¤Î¨ä¬ÛÃö°ò¦](2/2)( )
|
2024/08/01 ~ 2025/07/31 |
2 |
113 ¡X Z ¤j±M¾Ç¥Í¬ã¨spµe¤Î³Õ¤h«á ¡X NSTC113-2811-M-037-007 ¡X 9 ³Õ¤h«á¬ã¨sû
³Õ¤h¯Å¬ã¨s¤Hû--±çÄɾì( )
|
2024/08/01 ~ 2025/07/31 |
3 |
112 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X NSTC112-2113-M-037-020 ¡X 1 Ó¤H«¬
¶}µo¤ò²ÓºÞ·L¬yÅé¨t²Î·f°t©`¦Ìªí±½Æ¦X§÷®ÆÀ³¥Î©ó§Ö³tÀË´úIrinotecan¤§ÃĪ«¦å¤¤¿@«×¤Î¨ä¬ÛÃö°ò¦](1/2)( )
|
2023/08/01 ~ 2024/07/31 |
4 |
111 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST111-2113-M-037-010 ¡X 1 Ó¤H«¬
¶}µoµ¥·Å°ò¦]©ñ¤j¥¥x·f°t©`¦Ì§÷®Æ»P·L«¬¸Ë¸mÀ³¥Î©ó§Ö³tÀË´úHLAµ¥¬ÛÃö°ò¦]( )
|
2022/08/01 ~ 2023/07/31 |
5 |
110 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST110-2113-M-037-013 ¡X 1 Ó¤H«¬
¶}µo¸Õ¯È·P´ú¥¥x¨Ã·f°t©`¦Ì§÷®ÆÀ³¥Î©ó§Ö³tÀË´ú¬ÛÃö°ò¦]¤§¥Ò°ò¤Æ( )
|
2021/08/01 ~ 2022/07/31 |
6 |
109 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST108-2113-M-037-018-MY2 ¡X 1 Ó¤H«¬
¶}µo¾AÅéºÏ¯]¥¥x¨Ã·f°t©`¦Ì§÷®ÆÀ³¥Î©ó§Ö³tÀË´ú¦åºÞ¤º¥Ö¥Íªø¦]¤l¤Î¨ä¬ÛÃö°ò¦](2/2)( )
|
2020/08/01 ~ 2021/07/31 |
7 |
108 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST108-2113-M-037-018-MY2 ¡X 1 Ó¤H«¬
¶}µo¾AÅéºÏ¯]¥¥x¨Ã·f°t©`¦Ì§÷®ÆÀ³¥Î©ó§Ö³tÀË´ú¦åºÞ¤º¥Ö¥Íªø¦]¤l¤Î¨ä¬ÛÃö°ò¦](1/2)( )
|
2019/08/01 ~ 2021/07/31 |
8 |
107 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST106-2113-M-037-020-MY2 ¡X 1 Ó¤H«¬
«Ø¥ß©`¦Ì²É¤l°ò¦]·P´ú¥¥x¨ÃÀ³¥Î©ó¤ÀªREGFR°ò¦](2/2)( )
|
2018/08/01 ~ 2019/07/31 |
9 |
106 ¡X N °ê¬ì·|(ì¬ì§Þ³¡) ¡X MOST106-2113-M-037-020-MY2 ¡X 1 Ó¤H«¬
«Ø¥ß©`¦Ì²É¤l°ò¦]·P´ú¥¥x¨ÃÀ³¥Î©ó¤ÀªREGFR°ò¦](1/2)( )
|
2017/08/01 ~ 2019/07/31 |
10 |
106 ¡X Q ·s¸u±Ð®vpµe(®Õ¤º) ¡X KMU-Q107013 ¡X
µo®i©`¦ÌºÏ¯]¥¥x¥HÀ³¥Î©ó¥Íª«·P´úªí¥Ö¥Íªø¦]¤l¨ü¾¹°ò¦]( )
|
2018/01/01 ~ 2018/12/31 |
Patent
NO | Patent Name | Country | Certified Date | Patent No |
---|---|---|---|---|
1 | ´ú©w¢á¢Û¢Ü°ò¦]¬O§_µo¥Í°ò¦]Âಾ©Î¬ðÅܪº¤èªk | ¤¤µØ¥Á°ê | 2011/10/11 | I350312 |
2 | ´ú©wSMN°ò¦]¬O§_µo¥Í°ò¦]Âಾ©Î¬ðÅܪº¤èªk | ¬ü°ê | 2011/01/25 | 7,875,432 |
3 | ´ú©wSMN°ò¦]¬O§_µo¥Í°ò¦]Âಾ©Î¬ðÅܪº¤èªk | ¬ü°ê | 2011/11/29 | 8,067,568 |
4 | ´ú©wSMN°ò¦]µo¥Í°ò¦]Âಾ©Î¬ðÅܪº¤èªk | ¥H¦â¦C | 2015/03/01 | 210023 |